
Responsive Elastic Computing

Julien Perez
Laboratoire de Recherche en

Informatique
INRIA, CNRS and Université

Paris-Sud
julien.perez@lri.fr

Cécile Germain-Renaud
Laboratoire de Recherche en

Informatique
INRIA, CNRS and Université

Paris-Sud
cecile.germain@lri.fr

Balázs Kégl
Laboratoire de l’Accélérateur

Linéaire
CNRS and Université

Paris-Sud
kegl@lal.in2p3.fr

Charles Loomis
Laboratoire de l’Accélérateur

Linéaire
CNRS and Université

Paris-Sud
loomis@lal.in2p3.fr

ABSTRACT
Two production models are candidates for e-science com-
puting: grids enable hardware and software sharing; clouds
propose dynamic resource provisioning (elastic computing).
Organized sharing is a fundamental requirement for large
scientific collaborations; responsiveness, the ability to pro-
vide good response time, is a fundamental requirement for
seamless integration of the large scale computing resources
into everyday use. This paper focuses on a model-free re-
source provisioning strategy supporting both scenarios. The
provisioning problem is modeled as a continuous action-state
space, multi-objective reinforcement learning problem, un-
der realistic hypotheses; the high level goals of users, ad-
ministrators, and shareholders are captured through simple
utility functions. We propose an implementation of this rein-
forcement learning framework, including an approximation
of the value function through an Echo State Network, and
we validate it on a real dataset.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: GENERAL;
I.2.6 [Learning]: Connectionism and neural nets; I.2.8 [Problem
Solving, Control Methods, and Search]: Scheduling

General Terms
Algorithms Measurement Performance

1. INTRODUCTION
Two approaches are currently proposed to provide com-

putational resources at a large scale. In the grid model,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GMAC’09, June 15, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-578-9/09/06 ...$5.00.

institutions acquire resources and make them available to
e-science users; the key point is sharing:

What is shared, who is allowed to share, and
the conditions under which sharing occurs [11].

The concept of Virtual Organizations (VOs) formalizes
quantitative and qualitative access rights in grids. In the
cloud model, the resources are leased to users, and the key
point is the capacity of dynamic resource provisioning (on-
demand availability), coined as elasticity by Amazon EC2.
Organized sharing is a fundamental requirement for large
scientific collaborations running immensely large simulations
on a timescale of tens of years, such as in the High Energy
Physics (HEP) community. Responsiveness, the ability to
provide Quality of Service (QoS) in terms of response time,
is a fundamental requirement for seamless integration of the
large scale computing resources into everyday use. For in-
stance, continuing the HEP example, a physicist wants to
analyze the outputs of the above-mentioned simulations, or
the future experimental events issued by the Large Hadron
Collider, at its own pace. Thus, each of these infrastructures
favors a specific usage scenario. As data management is the
core of e-science (and business as well), exploiting the same
infrastructure for acquiring, storing, and analyzing data is
highly desirable.

In our research, we seek to develop resource provision-
ing models and operational systems that reconcile these two
usage scenarios in the context of e-science. Motivated by
this general goal, this paper focuses on the specific problem
of supporting workloads that combine requests for quasi-
immediate allocation of computational resources for a lim-
ited time period (responsive requests) and requests for com-
putational resources whenever available (best-effort requests).
The need for responsiveness arises in various situations, rang-
ing from urgent computing applications [3], where the ”lim-
ited time” might be quite high, to truly interactive appli-
cations involving computational steering, in which the in-
dividual tasks durations are extremely small [13]; another
example is workflows where sequential supervision tasks are
on the critical path [10].

This paper proposes an approach that uses Reinforce-
ment Learning (RL) as a unified resource provisioning and

in
ria

-0
03

84
97

0,
 v

er
si

on
 1

 -
17

 M
ay

 2
00

9
Author manuscript, published in "2009 ACM/IEEE Conference on International Conference on Autonomic Computing (2009)

55-64"
 DOI : 10.1145/1555301.1555311

http://dx.doi.org/10.1145/1555301.1555311
http://hal.inria.fr/inria-00384970/fr/
http://hal.archives-ouvertes.fr

scheduling (resource allocation) mechanism. In the follow-
ing, this double function (provisioning and scheduling) will
be called supervision, and the corresponding software entity
the supervisor. The flexibility of an RL-based system allows
us to model the state of the resources, the jobs to be sched-
uled, and the high-level objectives of the various grid actors.
RL-based supervision can seamlessly adapt its decisions to
changes in the distributions of inter-arrival time, QoS re-
quirements, and resource availability. Moreover, it requires
minimal prior knowledge about the target environment in-
cluding user requests and infrastructure.

We develop a general RL framework with models for classes
of jobs (currently two, best-effort and responsive), for objec-
tive functions, and for the infrastructure. Furthermore we
demonstrate that introducing a moderate level of elasticity
in the resource provisioning is critical to ensure that both
classes can coexist with a high level of user satisfaction. We
considerably extend our previous work [15, 25] in the same
area by first getting rid of unrealistic hypotheses about per-
fect knowledge of the computation characteristics, second
by introducing elasticity as a key performance factor, and
finally by exploiting recent advances [18] in approximating
the value function through recurrent neural networks. This
work has been developed in the framework of the flagship
EU grid infrastructure EGEE (Enabling Grid for E-SciencE)
[9], both for the grid model, and for the experimental data.

The major contributions of our paper are as follows.

• We describe a formalization of the supervision problem
as a continuous action-state space, multi-objective re-
inforcement learning problem, under realistic hypothe-
ses.

• We explore implementations of the reinforcement learn-
ing framework integrating those high level goals and
explain the role of elastic allocation.

• We show experimentally that our RL-based supervisor
achieves responsiveness without degrading utilization,
as measured by several metrics related to user and ad-
ministrator satisfaction.

2. PROBLEM STATEMENT

2.1 The Need for Responsiveness
Before embarking into the solution, the relevance and scope

of the problem must be stated. Major industry players ac-
knowledge interactivity as a critical requirement for enlarg-
ing the scope of high performance computing [22] and invest
in this direction. Nonetheless, the general vision remains
that large to massive computations dominate the e-science
workloads. It might be considered as a self-realizing pre-
diction: a long-latency software infrastructure has little ap-
peal for tasks requiring responsiveness. The reality is more
complex: because the resources and the data are there and
because the workflows include long and short computations,
users requiring responsiveness have little choice and do ex-
ploit the unresponsive infrastructure, albeit with repeated
requirements towards improving QoS.

Considering it has tens of thousands of CPU’s, petabytes
of storage, an extensive coverage of scientific communities,
and the perspective of sustainable development, the EGEE
grid provides a good approximation of the current needs
of e-science. With extensive monitoring facilities already in

Figure 1: Cumulative distribution of execution
times in the EGEE grid.

Figure 2: Distribution of the relative overhead.

place, EGEE offers an unprecedented opportunity to observe
and gain understanding of new computing practices of e-
science.

The following analysis will give empirical evidence of two
facts: 1) short jobs are the ”dark matter” of e-science, and
2) improving responsiveness is required.

We analyze here more than one year of EGEE produc-
tion under gLite [20], the EGEE middleware. The trace was
provided by the Real Time Monitor project [7]. The trace
covers the period November 2005 to January 2007 and in-
cludes more than 17 million production jobs belonging to 114
VOs. Jobs launched by operations management for testing
service availability have been removed from the trace, thus
the results faithfully describe user activity.

Fig. 2 shows the distribution of execution times from this
trace. The striking feature is the importance of short jobs.
All requests aggregated, the 70% quantile is approximately
900 seconds. These data also support our claim that all
scientific communities need responsiveness. This is obvious
for the biomedical community (Biomed VO), with more than
80% of short jobs. However, even the Atlas VO (the largest
HEP community) features more than 50% of short jobs.

Fig. 2 shows the distribution of V , the dimensionless rel-
ative overhead; V is the ratio of the time spent in queue
to the execution time of a job; the time spent in the mid-
dleware stack is not included, thus the relative overhead is

in
ria

-0
03

84
97

0,
 v

er
si

on
 1

 -
17

 M
ay

 2
00

9

only related to the supervision issue addressed in this paper.
40% of the short jobs experience a tenfold slowdown due to
queuing delays alone, a clear indicator of un-responsiveness.

2.2 Grids and clouds
The experimental data and the motivations for this paper

come from the grid world. One can argue that grid infras-
tructures are bound to disappear into the more comprehen-
sive cloud model. The grid-gloud convergence discussion is
beyond the scope of this paper; for an in-depth comparison
see [12]. However, the impact of virtualization, which is the
core enabling technology of clouds, must be considered.

Virtualization brings a major advantage over grids: the
”quantifiability” of allocation. A grid job must run to com-
pletion, except if checkpointing facilities are available (which
is extremely rare). With the capacity to suspend, migrate,
and resume computations encapsulated in virtual machines,
resource allocation can be broken down along quanta of time.
It might thus appear that the need for responsiveness could
be addressed solely by adapting soft real-time scheduling
methods [6, 28], which allocate quanta of time in order to
meet the deadlines of the computations with bounded error.
However, even for periodic tasks and at the modest level of
concurrency offered by multi-cores the coexistence of best ef-
fort and real-time remains an open question; recent work [24]
adopts a ”feedback loop” method to steer the VM allocation
in this case. Secondly, and more importantly, the sociology
and economics of the e-science make it difficult that user
computations could be embarked individually as images to
draw from an undifferentiated resource pool. More likely,
similarly to a recent experiment [1], the middleware stack
will be virtualized and exploited onto resources leased by
scientific institutions. In this last case, virtualization does
not provide much help to arbitrate between responsive and
best-effort requests.

3. THE RL FRAMEWORK
This section describes the RL models of the supervision

problem. For the sake of completeness, the first section
briefly recalls the basics of Markov Decision Process (MDP)
and RL.

3.1 Markov Decision Process and RL
A Markov Decision Process is a quadruple (S,A, P,R)

where S is the set of possible states of the system, A is
the set of actions (or decisions) that can be taken, and P is
a collection of transition probabilities

P ass′ = P{st+1 = s′|st = s, at = a}

that map the current state and action to the next state. The
function

Ras,s′ : S ×A× S → R

defines the rewards earned when moving from state s to state
s′ through action a.

The goal is to find a stationary policy π∗ : S → A which
chooses the action to take in each state, without knowledge
of the past history (other than what is summarized in the
state). The objective is to maximize the the long-term ex-
pectation of the rewards, the so-called value function

Qπ(s, a) = Eπ

[
∞∑
k=0

γkrt+k+1|st = s, at = a

]
,

where γ ∈ [0, 1] is a discount factor dampening the future re-
wards. In the scheduling context, P and R (the environment
dynamics) are unknown, so the Q function has to approxi-
mated through repeated experiments. This is the definition
of reinforcement learning [29]: the optimal policy will be
learned by interactions with the environment.

Algorithm 1 The sarsa algorithm. Q(s, a) is the value
function, π̃ is the policy that selects a∗ = arg maxaQ(s, a)
with probability 1− ε and an arbitrary action a with prob-
ability ε, γ is the discount factor, and η is the learning rate.

Initialize Q(s, a) arbitrarily
s0 ← current system state; Choose a0 from π̃
s← s0; a← a0

REPEAT
Take action a; observe r and s′; choose a′ from π̃
Q(s, a)← Q(s, a) + η[r + γQ(s′, a′)−Q(s, a)]
s← s′; a← a′

UNTIL shutdown

The particular policy learning framework used in this work
is based on sarsa, a member of the class of temporal-difference
learning algorithm (Fig. 1). sarsa is an on-policy learning
algorithm: the approximate value function guides the se-
lection of the current action a, thus the reward r and the
next state s′. The policy π̃ is defined by the current ap-
proximation Q. More precisely, if a∗ is the action which
maximizes the expected reward considering the current ap-
proximation Q (that is, a∗ = arg maxaQ(s, a)), then a∗ is
selected with probability 1 − ε. To maintain a trade-off
between exploitation (using the knowledge gained so far)
and exploration (looking for potentially better actions), with
probability 1 − ε we select an action drawn randomly from
among all the available actions. This is the so-called ε-greedy
strategy where the parameter ε determines the exploration-
exploitation trade-off.

3.2 The Supervision Models
We implemented two different Markov Decision Processes.

The first MDP solves the problem of job scheduling under
the hypothesis of a fixed amount of computing resources
with the objective of minimizing the overhead and main-
taining a predefined fair-share amongst VOs.

In the second MDP we consider an elastic resource and ask
the MDP to also make decisions concerning the resources.
The objective in this second MDP is to minimize overhead
and maximize utilization. For simplicity, the fair-share con-
straint was dropped in this MDP, but we plan to integrate
it in further work.

As explained before, a reinforcement learning formaliza-
tion needs to define states, actions, and rewards for a given
problem. We propose a set of variables describing states and
actions to allow the formulation of the grid scheduling prob-
lem and the resource provisioning problems as continuous
action-state space reinforcement learning problems. The set
of variables describing the state of the system is the same in
the two MDP’s but they differ in the set of actions and the
definition of the reward.

State Space: the grid Model
A complete model of the grid would include a detailed de-
scription of each queue and of all the resources. This would
be both inadequate to the MDP framework and unrealistic:

in
ria

-0
03

84
97

0,
 v

er
si

on
 1

 -
17

 M
ay

 2
00

9

the dimension of the state space would become very large.
Instead, the state is represented by a the following set of
real-valued variables:

• the total workload of running jobs;

• the time before a resource becomes available;

• the backlog, that is, the amount of work corresponding
to queued jobs;

• the number of idle machines;

• the proportion of jobs of each VO in the queues.

Any job management system provides the last two de-
scriptors at any time. The three first descriptors, associated
with workload, are discussed below.

Action Space for the Scheduling MDP: the Job Model
In the first MDP each waiting job is a potential action to be
chosen by the scheduler. As a consequence, except if there is
no job waiting, the scheduler will always select a job when
a resource become available (greedy allocation). A job is
represented by a set of descriptors.

• the type of the job (batch/interactive);

• the VO of the user who submitted the job;

• the execution time of the job (the time to complete the
job without any queuing or management overhead).

The VO associated with the job is a mandatory feature
in large scale grids systems, and is available along the whole
lifecycle of the job.

If the choice between batch and interactive quality of ser-
vice is proposed by the grid environment, the knowledge of
this type is a realistic assumption: the interactive/batch flag
is known for each job before the execution, and since the user
has a strong interest to correctly specify it, we can trust it.

Workload Descriptors
The first three descriptors in the state space and the last
one in the action space are related to the execution time
of jobs. In this work, we compare two models. The ora-
cle model assumes perfect knowledge of this quantity when
the job is placed in the queue. Although utterly unrealistic
(except in very specific cases), this hypothesis provides an
upper bound on the quality of the RL-based scheduling and
resource provisioning as well. The estimated model makes
a very crude estimate of the execution time by the median
of the execution times for the batch and interactive jobs,
respectively, along an extended time window. Here, the hy-
pothesis is fully realistic: historical data are readily available
online inside gLite.

Action Space for the Elastic Provisioning MDP
The decision problem associated to elastic computing ex-
tends the scheduling framework to adjusting the number of
computing resources available for maximizing the utilization
of the resources. Thus, there are two actions in this case:
a job (to be scheduled) and a request for a specific number
of processors (cores in the present setting) to be used for
the next period of time. This work sticks to the grid model
where jobs are not virtualized. Without virtualization, the

range of adjustments is constrained: as a running job cannot
be suspended (e.g. for going back in a queue), the number
of resources must always be larger or equal to the number
of running jobs.

Rewards
The reward function used in the scheduling problem is a
combination of the responsiveness utility and the fairness.

The responsiveness utility is formally defined as

Wj =
execution timej

execution timej + waiting timej
. (1)

The responsiveness utility represents the reward associ-
ated with minimizing the overhead (Wj = 1/(1 + Vj)). In
both the oracle and estimated models, the rewards are com-
puted when the job completes, thus when its actual exe-
cution time and queuing delays are available. Hence, the
delay separating the action and the reward is highly vari-
able; with their short execution time, interactive jobs have
a more immediate impact on the learning process.

The fairness represents the difference between the actual
resource allocation and the externally defined share given
to each VO. The allocation process should be such that the
service received by each VO is proportional to this share.
If there are n VO’s, the shares are usually expressed as
the n-vector of the percentages of the total resources w =
(w1, . . . wn). Let Skj be the fraction of the total service re-
ceived by VO k up to the election of job j. Then, the deficit
distance between the optimal allocation and the actual al-
location is a good measure of the unfairness. The deficit
distance is defined as

Dj = max
k

(wk − Skj)+,

where x+ = x if x > 0 and 0 otherwise.
The unfairness is bounded above by M = maxk(wk). A

normalized fairness reward can thus be derived by a sim-
ple linear transform. If M is the maximal unfairness, the
fairness utility Fj associated to the election of job j is

Fj = −Dj
M

+ 1. (2)

The reward function used in the elastic computing deci-
sion problem also uses the responsiveness utility, but this
time it is combined with the measure of resource utilization.
Formally, let (T1, . . . , TN) be the successive instants of deci-
sion making, as described in the Action Space section, with
T1 = 0. Let Pk be the number of processors allocated in the
interval [Tk, Tk+1] for 1 ≤ k < N . Finally, let fn be the sum
of the execution times of jobs completed at time Tn. The
utilization reward Un at time Tn is then defined as

Un =
fn∑n

k=0 Pk(Tk+1 − Tk)
(3)

With these definitions, all the rewards are in the [0, 1]
range, thus on the same scale. In both problems, the actual
reward is a linear combination of two of the three rewards.
In the scheduling problem, the reward is defined as

Rs = λsW + (1− λs)F,

whereas in the elasticity problem, the reward is defined as

Re = λeW + (1− λe)U,

in
ria

-0
03

84
97

0,
 v

er
si

on
 1

 -
17

 M
ay

 2
00

9

where λs, λe ∈ [0, 1] are coefficients that allow controlling
the trade-off between the rewards.

3.3 Continuous State-Action Space and Echo
State Networks

In both problems, the state-action space is continuous
(real valued). As a consequence, implementing the assign-
ment Q(s, a)← Q(s, a) +η[r+γQ(s′, a′)−Q(s, a)] in Fig. 1
is not immediate. The straightforward method would be
to discretize the values (binning), and use a lookup table
to represent Q(s, a). However, the space dimensionality is
high: with 7 VO’s, the state-action space for the scheduling
problem is R(19).

The table representation would either require large bins
(thus a very rough approximation) or a large number of bins
that would result in excessively long training time. The
alternative is to use a non-linear continuous approximation,
as proposed in numerous works (e.g. [5, 31]). The design
choice then lies in the interpolation method: one can use
neural networks, Gaussian processes [26], or kernel methods,
to cite a few of the available classes of algorithms.

Whatever method is used, the simple assignment in line 4.
of the sarsa algorithm must be replaced by a learning pro-
cedure. In the case of the neural models, there are two
possibilities: stochastic on-line learning, where the network
is modified in each iteration only using the newly acquired
training example, and batch re-learning, where the neural
network is re-trained from scratch each time a new training
example is added to the training set. For the time being we
are using the batch option for simplicity and efficiency.

We considered two approaches for representing the value
function Q(s, a). The first one uses an ordinary feed-forward
neural net and trains it using standard back-propagation.
The second approach uses an Echo State Network (ESN)
[18] from the family of recurrent neural nets. The advantage
of this latter approach is that it can represent a system that
goes beyond the standard Markovian assumption, in which
it is assumed that all the past is entirely captured by the
state descriptors. The discussion of the relevance of this
choice is deferred to Section 6.

In the continuous approximation problem, learning the
target Q function can be considered as an optimization prob-
lem. However an exploration-exploitation tradeoff must be
ensured during the learning process to correctly sample the
expectation reward function. In the case of continuous rep-
resentation of the state/action space, several algorithms based
on gradient descent and residual minimization has shown
good efficiency and robustness in synthetic and real appli-
cations [8] [2] [16]. One of the advantages of the ESN is the
simplicity of the learning algorithm: a linear regression [18]
over the output weights is used to learn the target function.

In a very complex optimization landscape, running the
modified sarsa algorithm with an untrained ESN would lead
to extremely bad decisions in the beginning. This would ad-
versely impact the performance both because of the actual
scheduling of the first jobs and because of a poor initial
approximation of the value function. To overcome this ini-
tialization issue, the RL system is pre-trained off-line with
an early deadline first policy. After a few learning sweeps
using the collected rewards, the network can start to take
its own decisions and to be optimized using real rewards.

4. EXPERIMENTAL SETUP

We developed a simulation framework to evaluate the per-
formance of RL-based resource allocation and scheduling.
This section presents the simulation methodology, the work-
loads, and the experiments.

4.1 Simulation Methodology
We perform a discrete event simulation of the complete

lifecycle of jobs. The events are submission, dispatch, and
termination. The submission of a job adds an entry onto a
shared queue. The state of the art batch schedulers heav-
ily rely on multiple queues, with a simple FIFO scheduling
inside each queue and prioritization amongst queues based
on configuration files. Although our simulator can manage
multiple queues, one of the goals of this work is to show that
model-free methods are more effective, thus all jobs are fed
to a unique queue.

The most important event is the termination of a job,
which causes the manager to select a new job to run in all
cases. In realistic schedulers (and in our implementation),
the selection process is at worst on the scale of milliseconds,
thus each termination is an opportunity to select a job. In
the elastic case, a termination event might also lead to ex-
tending or contracting the resource pool. In order to create
a realistic model, we added two constraints. First, the ex-
tension/contraction cannot be assumed to be instantaneous.
Thus, the pool size has been constrained to be stable for at
least 15 minutes. Second, the administrative structure re-
sponsible for a pool (the equivalent of site administrators in
the rigid case) will be required to guarantee some basic level
of service in terms of a minimum number of available cores.
Thus, in our simulations, the number of cores is not allowed
to drop below 30.

The core of the simulator is the learner. In the SARSA
algorithm, the exploration-exploitation tradeoff parameter
ε was set to 0.05, the discount parameter γ was set to 0.8
and the learning rate η to 0.2. The reservoir of the ESN
is composed by a set of 100 sigmoidal neurons, the weights
are randomly fixed in [0, 1] with 10% of connectivity between
the neurons of the reservoir and 15% of connectivity between
the reservoir and the output neurons as in [18].

In all simulations, the first and last 500 jobs were dropped
from the result, in order to avoid the bias in the results
introduced by the ramp-up and draining phases.

4.2 The Input Workload
The basis for the input workload is a trace from EGEE,

namely the log of the PBS scheduler of the LAL site of
EGEE. The trace covers the activity of more than seven
weeks (from 25 Jul 2006 to 19 Oct 2006). It includes more
than 9000 user jobs, not counting the monitoring jobs which
are executed concurrently with the user jobs and consume
virtually no resource; they were removed from the trace. All
jobs are sequential, meaning that they request only one core.

From this trace we had to decide which requests are tagged
as either interactive or batch, in order to simulate a situation
where such requirement for QoS would be proposed. While
the submission queue could have provided some hint, most
queues include jobs with the full range of execution times.
This is due to the fact that the queues are mostly organized
along VO’s, not along quality of service. We decided to tag
jobs with an execution time less than 900 seconds as inter-
active jobs, and the other ones as batch jobs. Otherwise,

in
ria

-0
03

84
97

0,
 v

er
si

on
 1

 -
17

 M
ay

 2
00

9

Size Mean Median Std

Interactive 4480 160 190 108
Batch 5020 34927 15615 78755

Table 1: The EGEE workload. Size is the number
of jobs. The statistics refer to the execution time.
All times are in seconds.

0 50 100 150 200 250 300 350 400 450
0

1

2

3

4

5

6

7

8

9
x 10

6

Time bins

W
or

kl
oa

d
(e

xe
cu

tio
n

tim
e

in
 s

ec
.)

time serie of the workload arrival (1 bin = 10000 sec.)

Figure 3: The service request process

the workload is kept unchanged. Table 1 summarizes the
characteristics of the trace.

The trace includes the identifier of the target resource
which is described in the PBS log as a core. In the period
use in the experiments, the number of available cores is fairly
constant (P = 81).

The extended timescale of the trace offers the opportunity
to test the capacity of the RL-based supervisor to adapt
to changing conditions. The large value of the standard
deviation in Table 1 is a first indicator of high variability.
Fig. 3 shows the process of service requests. The service
request is the average of the requested CPU time over a
given time interval (here 10000 seconds). Obviously, the
service request is a bursty process: for instance, the peak at
300 amounts to 12 days of work for the 81 cores. However,
the overall utilization remains moderate, at 0.56.

Amongst the VOs present in the trace, only six contributed
significantly. The target vector is

[0.53, 0.02, 0.17, 0.08, 0.01, 0.16, 0.03].

The last share corresponds to the aggregation of the small
VOs. In the segment considered in the workload, the fairness
utility of the native scheduler is nearly constant (after the
ramp-up phase) at 0.7.

4.3 The Experiments
We ran simulations using the workload described above

with the following configurations:

• rig-ora - The resource configuration is rigid; the num-
ber of cores P is fixed (to 81, for comparison with
EGEE). Thus, we experiment on the scheduling MDP.
Moreover, the actual execution times are assumed to
be known at the submission time (oracle model). In-
side this setting, the weight λs of the responsiveness
utility is varied: for instance, experiment rig-ora-0.5
corresponds to λs = 0.5.

• rig-est - The resource configuration is rigid as in the
previous case, but the execution times are estimated

Interactive Batch
Mean Stdev Mean Stdev

rig-ora-0.5 0.866 0.314 0.892 0.228
rig-ora-1 0.869 0.308 0.893 0.226
rig-est-0.5 0.864 0.319 0.894 0.223
rig-est-1 0.867 0.311 0.899 0.216
nat 0.628 0.418 0.830 0.265

Table 2: Statistics of the responsiveness utility-
Rigid.

by the median of their respective categories (estimated
model).

• ela-ora and ela-est. The resource allocation is now
elastic, and we experiment on the elastic provisioning
MDP, both in the oracle and estimated models. Inside
this setting, the weight of the responsiveness utility λe
is varied from 0.5 (equal weight) to 1 (utilization not
considered).

Finally, we compare our results with the nat experiment,
which is the result of the activity of the EGEE scheduler as
collected in the trace.

5. EXPERIMENTAL RESULTS

5.1 Performance Metrics
The most important performance indicators are related to

1) the performance of the RL method itself, and 2) the sat-
isfaction of the grid actors. The quality of the optimization
performed by the RL is measured by the distribution of the
target indicator, which is the responsiveness utility W . Even
if W can be satisfactorily optimized, it remains prove that
it correctly captures the users’ expectations regarding QoS.
The user experience is dominated by the wallclock queuing
time, which is also reported. Considering fair-share, we re-
port the difference between the fair-share achieved by the
native scheduler (as the state of the art for fair-share), and
the fair-share of our scheduler; both are computed following
Eq. (2). Utilization, as computed by Eq. (3), is reported
directly.

5.2 The Scheduling MDP

Responsiveness Utility
Table 2 presents the summary statistics for the responsive-
ness utility W , and Fig. 4 shows the inverse cumulative
distribution functions of W (i.e. P (W > x) as a function
of x). The first result is that the RL architecture (includ-
ing the ESN) efficiently optimizes the responsiveness utility.
Recall that from the definition of W in Eq. (1), the closer
W is to 1, the better. Considering the summary statistics,
the average responsiveness of the RL-based methods applied
to interactive jobs is typically 0.86, while the native sched-
uler achieves only 0.63. Moreover, the standard deviation
is reduced by approximately 25%. For batch jobs, the RL-
scheduler does not degrade the average performance, and
there is even a slight improvment. Considering the distribu-
tion (Fig. 4), W is larger than 0.9 (that is, off the optimum
by 10% or less) for 82% or more of the interactive jobs. The
plots have been truncated on the vertical axis for readabil-
ity. The rightmost part shows that there is an empirical

in
ria

-0
03

84
97

0,
 v

er
si

on
 1

 -
17

 M
ay

 2
00

9

0 0.2 0.4 0.6 0.8 1
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Responsiveness utility

In
ve

rs
e

C
D

F

ORA−INTER−0.5
EST−INTER−0.5
ORA−INTER−1.0
EST−INTER−1.0

0 0.2 0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

0.9

0.95

1

Responsiveness utility

In
ve

rs
e

C
D

F

ORA−BATCH−0.5
EST−BATCH−0.5
ORA−BATCH−1.0
EST−BATCH−1.0

Figure 4: Distribution of the responsiveness-Rigid. Left: interactive jobs; right: batch jobs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Responsiveness utility

In
ve

rs
e

C
D

F

ORA−INTER−0.5
ORA−BATCH−0.5
EST−INTER−0.5
EST−BATCH−0.5
EGEE−INTER
EGEE−BATCH

Figure 5: Comparison of RL and baseline (EGEE)-
Rigid

threshold in the optimization process: only very few jobs
can achieve a responsiveness larger than 0.98.

Considering the weight λs, the most surprising result is its
very moderate impact. The reason is probably that, since
all VOs have interactive and batch jobs, the conversion from
specialized queues to one large bag of tasks creates fair-share
as a side-effect.

The second result is that switching from the unrealistic
oracle setting to a very simple estimation method degrades
the performance only marginally. The explanation is the
bimodality of the distribution of the execution times shown
in Table 1. These two features, mix of interactive and batch,
and bimodality, are not specific to our sample; it can be
generalized as shown by the discussion of the one-year EGEE
workload in Section 2.1.

Turning to the comparison with the native scheduler, Ta-
ble 2 and Fig. 5 show that the RL scheduler improves mas-
sively the native scheduler for all the jobs (both interactive
and batch). For the interactive case, only 53% of the jobs
reach a 0.9 W in the native scheduler, versus more than 80%
in the RL scheduler. A lesser but still significant improve-
ment is reached for the batch jobs (64% vs. 77%). The
batch case exemplifies once again the potential of improve-
ment related to switching from a hard-coded priority system
relying on separate queues and manual setting of complex
parameters to a model-free framework. The superior per-
formance of interactive jobs proves that the responsiveness
utility was indeed a good optimization target.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

−3

−2

−1

0

1

2

3

4
x 10

−3

Arrival Times (sec)

F
ai

rs
ha

re
 D

iff
er

en
ce

ELA−ORA−0.5 − EGEE

Figure 6: Dynamics of the fair-share-rigid case

Mean Std

rig-ora-0.5 1096 5137
rig-ora-1 862 3505
rig-est-0.5 1087 4838
rig-est-1 1152 5417

nat 2756 8844

Table 3: Statistics of the queuing delay for interac-
tive jobs-Rigid

Fairness
Fig. 6 shows the dynamics of the fair-share. The horizontal
axis is the simulated time, and the vertical axis is the dif-
ference between the RL and EGEE fairness utilities. Only
one experience has been reported, the other ones behaving
very similarly. The difference is actually negligible. Most
of the time, the RL scheduler is marginally superior, with
some excursions corresponding to bursts.

Queuing Delay
We now consider the queuing delay (Table 3 and Fig. 7).
Under the rigid scheduler, only 86% of the interactive jobs
experiment a queuing delay below 2 minutes. This is a much
better performance than the 63% featured by EGEE, but not
in the range of true Quality of Service.

The burstiness of the service requirements, pointed in the
analysis of the service request (Fig. 3), is the reason of this
difficulty. At some points in time, the service request is sim-

in
ria

-0
03

84
97

0,
 v

er
si

on
 1

 -
17

 M
ay

 2
00

9

10
1

10
2

10
3

10
4

10
5

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Queueing delay (sec)

C
D

F

EGEE−INTER
ORA−INTER−0.5
ORA−INTER−1.0
EST−INTER−0.5
EST−INTER−1.0

Figure 7: Distribution of the queuing delay for in-
teractive jobs-Rigid

Interactive Batch
Mean Stdev Mean Stdev

ela-ora-0.5 0.965 0.177 0.966 0.116
ela-ora-1 0.971 0.160 0.966 0.121
ela-est-0.5 0.958 0.184 0.960 0.123
ela-est-1 0.968 0.167 0.968 0.113

Table 4: Statistics of the responsiveness utility-
Elastic

ply too high, while resources are unused during extended
periods. In the next section, we explore a dynamic adapta-
tion of the resource pool.

5.3 The Elastic Provisioning MDP

Responsiveness Utility
Table 4 presents the summary statistics for the responsive-
ness utility. Comparing with Table 2, on average, the elas-
tic supervision allows to reach a responsiveness utility four
times closer to the optimum than the rigid scheduler in the
interactive case (and three times in the batch case). More-
over, the variance is also reduced.

Fig. 8 compares the inverse cumulative distribution func-
tions of W amongst the two MDPs. The elastic provisioning
MDP clearly outperforms the scheduling MDP: the elastic
supervision provides a responsiveness utility for interactive

0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Responsiveness utility

In
ve

rs
e

C
D

F

ELA−ORA−0.5
ELA−ORA−1.0
ELA−EST−0.5
ELA−EST−1.0
RIG−ORA−0.5
RIG−EST−0.5

Figure 8: Distribution of the responsiveness utility
for interactive jobs-Comparison of Elastic and Rigid

Mean Stdev Speedup

ela-ora-0.5 606 4245 45%
ela-ora-1 236 2200 73%
ela-est-0.5 458 3771 58%
ela-est-1 414 3584 64%

Table 5: Statistics of the queuing delay for interac-
tive jobs-Elastic

jobs above 0.9 for more than 94% of the jobs. Moreover, the
behavior of the elastic MDP is nearly “flat”, meaning that
an overwhelming fraction of jobs achieve very comparable
performance with respect to W . This rightmost part shows
the same threshold as in Fig 4 (approximately 0.98 for all
settings except “Estimated, λe = 0.1” where it is only 0.93),
but with a much better probability (in the range 94%-96%),
showing a very good optimization performance in absolute
terms, and a very significant improvement over the rigid set-
ting.

Elasticity and Utilization
Fig. 9 (left graph) shows the evolution of the number of cores
along time. Comparing with the service requests (Fig. 3),
the elastic provisioning MDP does adapt to the large burst
after time 3.0E6, as well as to the low level of requests in the
beginning of the trace. It is also interesting to notice that
the preferred value is 90 cores, which is close, but superior,
to the EGEE configuration (81 cores).

Fig. 9 shows the dynamics of the utilization (defined in
Eq. 3. For clarity, only the results of the estimated model
are displayed, the oracle ones being very close. The initial
peak corresponds to the low activity period and the conse-
quent reduction of the number of cores. Elastic provisioning
with utilization constraint enabled (ELA-EST-0.5) reaches
a nearly 100% utilization, much better than the rigid provi-
sioning. After that, the elastic and rigid curves cross, and
the price to pay for the superior responsiveness becomes ap-
parent: the elastic utilization is asymptotically 50%, while
the rigid utilization can reach a steady 70%. Significant
overprovisioning seems thus to be required under moderate
to high service requests for pretending to QoS. However, it
must be stressed that this overprovisiong is compensated by
the downsizing of the resource pool when the workload is
low. This is only a qualitative asessement. We are currently
exploring a more quantitative model for this

Queuing Delay
The elastic scheme significantly improves the quality of ser-
vice. For interactive jobs, the distribution of the queuing
delay (Fig. 10, cumulative distribution) is much more con-
centrated in the area below 120 seconds. More precisely, at
worst 5% of the jobs are above the 2 minutes barrier. On
average, the speedup is always above 45% (Table 5). Com-
pared to the rigid case, the impact of the settings (estimation
vs oracle, and scaling factor λe) is much more pronounced.
The easiest (although unrealistic) case for elastic provision-
ing is λe = 1 (utilization not considered) and oracle (execu-
tion times known in advance). Dropping utilization gives a
2.5 times advantage on average over a more balanced opti-
mization target (λe = 0.5). When execution durations are
not known, the difference in the scaling factor has much less
impact. However, estimation actually improves over perfect

in
ria

-0
03

84
97

0,
 v

er
si

on
 1

 -
17

 M
ay

 2
00

9

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

20

30

40

50

60

70

80

90

100

110

120

Arrival date (sec)

N
um

be
r

of
 c

or
es

ELA−EST−0.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Arrival date (sec)

U
til

iz
at

io
n

ELA−EST−0.5
ELA−EST−1.0
RIG−EST−0.5
RIG−EST−1.0

Figure 9: Dynamics of the elasticity. Left: number of cores; right: utilization

10
1

10
2

10
3

10
4

10
5

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Queueing delay (sec)

C
D

F

ELA−ORA−0.5
ELA−ORA−1.0
ELA−EST−0.5
ELA−EST−1.0
RIG−ORA−0.5
RIG−ORA−1.0

Figure 10: Distribution of the queuing delay for in-
teractive jobs

knowledge for λe = 0.5.

6. RELATED WORK
The general literature related to the application of RL

to scheduling is beyond the scope of this paper. The spe-
cific case of mixed workloads has been explored in depth
by Tesauro, in the context of data centers [32, 30]. There
are many differences between the grid and data center be-
havior, which explains the need for the different model pre-
sented here. The first one is the multi-objective setting. In
Tesauro’s work, the issue is the optimal allocation inside a
fixed set of resources amongst distinct workloads, where the
objective is to maximize a revenue function. In our work,
the objectives (fairness and responsiveness, or utilization
and responsiveness) are fully heterogeneous, and the perfor-
mance has to be evaluated separately. A second difference
lies in the time scales, and thus the acceptable hypothesis.
Data centers serve Web requests; the arrival and service pro-
cess a) can be reasonably approximated by queuing models,
at least on interval of times significant with respect to the
objective function, and b) feature short range correlations
at worst, or are even completely memoryless (Poisson ar-
rivals). Although not much is known yet on grid behavior,
[21] and our own observations [?] indicate that this is not
true for grid workloads. As a consequence of these two dif-
ferences, our variable selection is much less parsimonious
than in Tesauro’s work, because we have to represent the

system by aggregated observed quantities (on the numerical
side) rather than by model parameters, and we have also to
include categorical data (the VOs).

Tesauro has pioneered the use of neural networks as func-
tion approximators in reinforcement learning [31]. Consider-
ing scheduling and provisioning, realistic systems, whether
grids or data centers, cannot be considered as Markovian,
first in the intrinsic requirement processes, second because
of the lags introduced by the delayed measurement in the
RL learning (after job termination), and finally because of
the delays introduced by re-configuring the system. These
delays are crudely exemplified in our work by the 15 minutes
stability. They are also described in [30] as switching delays.
To cope with the non-Markovian behavior [30] integrates
some past states in the descriptors. An alternative is to
exploit recurrent (memory-enabled) neural networks. ESN
were found to be particularly well suited for learning and
predicting time series [19]. ESNs are also relatively easy to
train, compared to other recurrent networks. Thus, embed-
ding them inside the learning process is a promising way to
address problems where the past states and actions might be
relevant. Moreover, some convergence results for RL based
on ESN approximators have been recently obtained [17].

7. CONCLUSION AND PERSPECTIVES
This paper shows that the combination of RL and ESN

can address an issue typical of the new challenges in Ma-
chine Learning: devising an efficient policy for a large and
noisy problem where no approximate model is available.
The problem at hand also exemplifies a real-world situation
where traditional, configuration-based solutions reach their
limits, calling for autonomic methods. One of the most in-
teresting results is the robustness of the method to crude
estimations, in a situation where the variability is high.

Our future work will follow two avenues. The first one
will integrate a more refined model of the switching delays,
based on realistic hypothesis of future grid-over-clouds de-
ployments. The second one will explore more aggressive
methods for favoring interactive jobs when the RL-based
supervision appears to be lagging behind.

Acknowledgment
This work has been partially supported by the EGEE-III
project funded by the European Union INFSO-RI-222667
and by the NeuroLOG project ANR-06-TLOG-024.

in
ria

-0
03

84
97

0,
 v

er
si

on
 1

 -
17

 M
ay

 2
00

9

8. REFERENCES
[1] Stratuslab, 2008.

[2] L. Baird. Residual algorithms: Reinforcement learning
with function approximation. In Proceedings of the
Twelfth International Conference on Machine
Learning, pages 30–37. Morgan Kaufmann, 1995.

[3] P. Beckman, S.ßNadella, N.ßTrebonß, and
I.ßBeschastnikh. SPRUCE: A System for Supporting
Urgent High-Performance Computing. IFIP series,
(239):295–311, 2007.

[4] C. Blanchet, R. Mollon, D. Thain, and G. Deleage.
Grid Deployment of Legacy Bioinformatics
Applications with Transparent Data Access. In 7th
IEEE/ACM International Conference on Grid
computing, pages 120–127, 2006.

[5] J.A. Boyan and A.W. Moore. Generalization in
reinforcement learning: Safely approximating the
value function. In Advances in Neural Information
Processing Systems 7, pages 369–376.

[6] A. Chandra, M. Adler, and P. Shenoy. Deadline fair
scheduling: Bridging the theory and practice of
proportionate-fair scheduling in multiprocessor
servers. In Proc. of the 7th IEEE Real-Time
Technology and Applications Symposium, 2001.

[7] D.J. Colling and A.S McGough. The gridcc project. In
International Conference on Communication System
Software and Middleware, pages 1–4, 2006.

[8] K. Doya. Reinforcement learning in continuous time
and space. Neural Computation, 12:219–245, 2000.

[9] F. Gagliardi et. al. Building an Infrastructure for
scientific Grid computing: status and goals of the
EGEE project. Philosophical Transactions of the
Royal Society A, 1833, 2005.

[10] J. Montagnat et al. Workflow-Based Data Parallel
Applications on the EGEE Production Grid
Infrastructure. 6(4):369–383, 2008.

[11] I. Foster, C. Kesselman, and S. Tuecke. The anatomy
of the Grid: Enabling scalable virtual organizations.
Intl Jal Supercomputer Applications,, 15(3):200–222,
2001.

[12] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud
Computing and Grid Computing 360-Degree
Compared. In Grid Computing Environments
Workshop, pages 1–10. IEEE, 2008.

[13] C. Germain, R. Texier, and A. Osorio. Interactive
Volume Reconstruction and Measurement on the Grid.
Methods of Information in Medecine, 44(2):227–232,
2005.

[14] C. Germain-Renaud, C. Loomis, J. Mościcki, and
R. Texier. Scheduling for Responsive Grids. Journal of
Grid Computing, 6:15–27, 2008.

[15] C. Germain Renaud, J. Perez, B. Kégl, and C.
Loomis. Grid Differentiated Services: a Reinforcement
Learning Approach. In 8th IEEE International
Symposium on Cluster Computing and the Grid, Lyon
France, 2008.

[16] G.J. Gordon. Reinforcement learning with function
approximation converges to a region. In In Advances
in Neural Information Processing Systems, pages
1040–1046. The MIT Press, 2001.

[17] I. Szitaßand V. Gyenes and A. Lorinczß.
Reinforcement Learning with Echo State Networks. In

Artificial Neural Networks, ICANN 2006, pages
830–839. Springer, 2006.

[18] H. Jaeger. Adaptive nonlinear system identification
with Echo State Networks. In Advances in Neural
Information Processing Systems 15, pages 593–600.
MIT Press, 2003.

[19] H. Jaeger and H. Haas. Harnessing nonlinearity:
Predicting chaotic systems and saving energy in
wireless communication. Science, 304(5667):78 – 80,
2004.

[20] E. Laure and al. Programming the Grid with gLite,
2006.

[21] H. Li and M. Muskulus. Analysis and modeling of job
arrivals in a production grid. SIGMETRICS Perform.
Eval. Rev., 34(4):59–70, 2007.

[22] I. Mirman. Going parallel the new way, 2006.

[23] J. Mościcki, M.T. Bubak, H.C. Lee, A. Muraru, and
P.M.A. Sloot. Quality of service on the grid with user
level scheduling. In Cracow Grid Workshop, pages
119–129, 2007.

[24] S. M. Park and M. Humpfrey. Feedback-controlled
resource sharing for predictable e-science. In SC’08:
Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, pages 1–11. IEEE, 2008.

[25] J. Perez, C. Germain Renaud, B. Kégl, and C. Loomis.
Utility-based Reinforcement Learning for Reactive
Grids. In The 5th IEEE International Conference on
Autonomic Computing, 2008. Short paper.

[26] C. E. Rasmusen and C. Williams. Gaussian Processes
for Machine Learning. MIT Press, 2006.

[27] Q. Snell, M.J. Clement, D.B. Jackson, and C. Gregory.
The Performance Impact of Advance Reservation
Meta-scheduling. In IPDPS ’00/JSSPP ’00:
Proceedings of the Workshop on Job Scheduling
Strategies for Parallel Processing, pages 137–153.
Springer-Verlag, 2000.

[28] A. Srinivasan and J. H. Anderson. Efficient scheduling
of soft real-time applications on multiprocessors. Jal.
Embedded Computing, 1(3):1–14, 04.

[29] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

[30] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani.
On the use of hybrid reinforcement learning for
autonomic resource allocation. Cluster Computing,
10(3):287–299, 2007.

[31] G. Tesauro and T.J Sejnowski. A parallel network
that learns to play backgammon. Artificial
Intelligence, 39(3):357–390, 1989.

[32] Gerald J. Tesauro and Jeffrey O. Kephart. Utility
functions in autonomic systems. In Proceedings of the
1st International Conference on Autonomic
Computing(ICAC’04), pages 70–77, 2004.

in
ria

-0
03

84
97

0,
 v

er
si

on
 1

 -
17

 M
ay

 2
00

9

