
TOWARDS A GENERAL ONTOLOGY
OF COMPUTER PROGRAMS

Pascal Lando, Anne Lapujade, Gilles Kassel, Frédéric Fürst
LaRIA, Jules Verne University of Picardy, 33 rue Saint Leu, F-80039 Amiens, France

pascal.lando@u-picardie.fr, anne.lapujade@u-picardie.fr, gilles.kassel@u-picardie.fr, frederic.furst@u-picardie.fr

Keywords: Knowledge engineering, ontological engineering, foundational ontologies, core ontologies, program
ontologies.

Abstract: Over the past decade, ontology research has investigated the field of computer programs. This work has
aimed at defining conceptual descriptions of the programs so as to master their design and use.
Unfortunately, these efforts have only been partially successful. In this paper, we present the basis of a Core
Ontology of Programs and Software (COPS) which integrates the field’s main concepts. But, above all, we
emphasize the method used to build the ontology. In fact, COPS specializes not only the DOLCE
foundational ontology (“Descriptive Ontology for Linguistic and Cognitive Engineering”, Masolo et al.,
2003) but also core ontologies of domains (e.g. artefacts, documents) situated on a higher abstraction level.
This approach enables us to take into account the “dual nature” of computer programs, which can be
considered as both syntactic entities (well-formed expressions in a programming language) and artefacts
whose function is to enable computers to process information.

1. INTRODUCTION

Over the last ten years or so, the field of computing
programs has witnessed an increasing number of
ontological investigations in several disciplines with
different targets: in the philosophy of computer
science, the goal is to attain better knowledge of the
nature (Eden & Turner, 2006) and semantics of
computer programs (Turner & Eden, in press); in
software engineering, formal descriptions aim at
facilitating program maintenance (Welty, 1995,
Oberle et al., 2006). Such descriptions can also be
used to orchestrate and automate the discovery of
web services (Roman et al., 2005).
The work presented here is in line with these efforts.
It aims, in a first step, at building a general or “core”
ontology (Gangemi & Borgo, 2004) of the domain
of programs and software, encompassing main
concepts and relations for this domain. This core
ontology, named COPS (for: Core Ontology of
Programs and Software), will be used in a second
step to conceptualize a sub-domain of computer
programs, namely that of image processing tools.
This step takes place within the project NeuroLOG
(http://neurolog.polytech.unice.fr) which aims at
developing a distributed software platform to help
members of the neuroimaging community to share
images and image processing programs. This

platform relies on an ontology integrating COPS as a
component (Temal et al., 2006). In this paper, we
present on the current content of COPS in particular
but our overall focus is on the methodological
process that we used to build the ontology and the
resulting structural features. The COPS ontology
indeed specializes more abstract modules which
highly determine its structure, including the DOLCE
foundational ontology (“Descriptive Ontology for
Linguistic and Cognitive Engineering”, Masolo et
al., 2003) and the I&DA core ontology
(“Information and Discourse Acts”, Fortier &
Kassel, 2004). This type of design process is aimed
at mastering two sorts of complexity: i) conceptual
complexity, providing the ability to model complex
objects (such as programs) at different abstraction
levels and ii) modeling complexity, providing the re-
use of previously used and approved modules and,
equally, the ability to design new modules by
working in a distributed manner.
COPS has two syntactic expressions, corresponding
to the specifications of the ontology using the semi-
formal language from the OntoSpec method (Kassel,
2005) and using the RDF Schema language. Within
the NeuroLOG project, this latter expression is
implemented into software under development that
includes a semantic research tool called CORESE
(designed as part of the ACACIA project at the

INRIA institute, http://www.inria.fr/acacia/corese).
However, due to space restrictions, we shall
disregard these syntactic aspects in this paper and
focus on the ontology’s content.
The remainder of this article is structured in the
following way. In section 2, we present the overall
ontological framework of reference used (and the
DOLCE and I&DA ontologies in particular). Section
3 details the COPS ontology’s content and our
design choices. In section 4, our work is compared
with other efforts to design ontologies in the domain
of computer programs.

2. OUR ONTOLOGICAL
FRAMEWORK

As shown in Figure 1, the COPS ontology is
integrated into a larger ontology composed of sub-
ontologies which are situated at different levels of
abstraction: a descending link between two sub-
ontologies O1 and O2 means that the conceptual
entities (concepts and relations) of O2 are defined by
specialization of the conceptual entities of O1. The
DOLCE foundational ontology and the different
core ontologies make up the resource used by the
OntoSpec methodology (http://www.laria.u-
picardie.fr/IC/site/) for helping to structure
application ontologies (which include all the
concepts necessary for a particular application), such
as that developed within the NeuroLOG project.
As a consequence of this overall structure, COPS’s
conceptualization depends on modeling choices
made upstream, i.e. in components situated at a
higher level of abstraction. In this section, we
present these key modeling choices by successively
introducing the DOLCE ontology (2.1), the
modeling of (participant) roles & artefacts (2.2) and
the I&DA ontology (2.3).

 Foundational
ontology

Core
ontologies

 Domain
ontologies

DOLCE

I&DA

OntoKADS

COPS

Particular

Documents

Artefacts

Participant roles

Reasonings

Programs &
Software

Medical images Images processing tools
Figure 1: Structure of the application ontology in the
NeuroLOG project.

2.1 DOLCE (Particulars)

DOLCE is a “foundational” ontology, which means
that it comprises abstract concepts aimed at

generalizing the set of concepts that we may
encounter in the different domains of knowledge. In
accordance with philosophically-grounded
principles, DOLCE’s domain – that of Particulars –
is partitioned into four sub domains (cf. Fig. 2):
– Endurants are entities “enduring in time” (e.g.

the present article). Within Endurants, Physical
Objects are distinguished from Non-Physical
Objects, since only the former possess direct
spatial Qualities. The domain of Non-Physical
Objects covers social entities (e.g. the French
community of researchers in knowledge
engineering) and cognitive entities (e.g. your
notion of knowledge engineering). To take plural
entities into account (a community of persons or
the proceedings of a conference), the notion of
Collection was recently introduced under Non-
Physical Objects (Bottazzi et al., 2006).

– Perdurants are entities which “happen in time”
(e.g. your reading of this article) and in which
Endurants participate. Among Perdurants, one
defines Actions that are intentionally
accomplished (Accomplishments), i.e. controlled
by an Agent (further defined in 2.2).

– Endurants and Perdurants have inherent
properties (Qualities) that we perceive and/or
measure (e.g. the weight of the paper copy of the
article you may be holding or how long it takes
you to read this paper).

– These Qualities take a value (Quale) within
regions of values which are Abstracts (e.g. 20
grams, 15 minutes).

These concepts are defined in DOLCE by means of
rich axiomatization, which space restrictions prevent
us from presenting. In particular, Endurants and
Perdurants can be differentiated in terms of the
dissimilar temporal behaviors of their parts. The
interested reader is invited to refer to (Masolo et al.,
2003).

Particular

Endurant Perdurant Quality Abstract

Physical
Object

Non-physical
Object

Mental
Object

Agentive
Social
Object

Event Stative

Achievement
Accomplishment

State Process

Collection
Action

Figure 2: An excerpt from DOLCE’s hierarchy of
concepts.

Comment: in the following sections, names of
conceptual entities will be noted in italics, with first
Capital Letters for concepts and in a
javaLikeNotation for relations.

2.2 Roles and Functions

In this section, we introduce two important notions
linking Endurants to Perdurants (namely roles and
functions) and we provide a brief reminder of the
underlying modeling choices (Bruaux et al., 2005).
A role (or more exactly a “participant role” or
“thematic role”) accounts for the way an Endurant
participates (as meant by DOLCE) in a Perdurant.
By way of an example, during the writing of an
article, several entities participate in this Action: a
person as an Agent, a pencil or a pen as an
Instrument and the article itself as a Result. The term
“role” designates here a category of concepts (e.g.
Agent, Instrument, Result) which constitute a sub-
ontology of Endurants, as the signature of the
participation relation constraints participants to be
Endurants (cf. Fig. 3a).
A function can be defined as the ability – assigned
by agents to Endurants – to facilitate the
performance of an Action, i.e. the ability of playing
the role of Instrument in a Perdurant; in turn, this
notion enables definition of the concept of an
Artefact - an Endurant to which a function is
assigned. According to the type of Action (the sub-
ontology of Actions on which COPS relies is
discussed in 3.2), different types of Artefacts can be
distinguished (cf. Fig. 3b): Tools are distinguished
from Cognitive Artefacts according to whether the
Action they can perform corresponds to modification
of the physical world or the non-physical world. Of
the latter, Artefacts of Communication enable
communication of information to agents, whereas
Artefacts of Computation allow computers to
perform Actions as Agents.
In Figure 3, one can note that the concepts of Author
and Scientific Publication encapsulate the type of
entity and, respectively, the role and function
assigned to the entity. This modeling choice, which
is consistent with the most common paradigm for
role modeling (Steimann, 2000), leads to a tangled
taxonomy.

 Endurant

Person Determinant Patient

Agent Substrate

Author

#PascalLando

Endurant

Non-Physical
Object

Artefact

Cognitive ArtefactTool

 Artefact of
Communication

Artefact of
Computation

Scientific Publication

#(Lando et al., 2007) 3a

isa
isa

3b
Figure 3: Modeling of roles (a) and functions-artefacts (b).

2.3 I&DA (Documents)

I&DA is a core ontology in the domain of semiotics,
and was initially built to classify documents by their
contents. As shown in Figure 4, I&DA extends
DOLCE by introducing three main concepts:
– Inscriptions are knowledge forms materialized

by a substance and inscribed on a physical
medium (e.g. a written text materialized by some
ink on a sheet of paper). Furthermore, these
forms are intentional objects, holding for other
entities: Inscriptions realize Expressions.

– Expressions are non-physical knowledge forms
orderedBy a Language. In their turn,
Expressions hold for other entities, namely
contents that agents attribute to them:
Expressions express Conceptualizations.

– Lastly, Conceptualizations are means by which
agents can reason about a world. Within
Conceptualizations, a functional distinction is
made between Propositions (which are
descriptions of situations) and Concepts (which
serve to classify entities in a world).

The reader will note that, in order to account for
documents, I&DA chooses to consider three distinct
entities rather than three different views of the same
entity. We shall see in the next section that this
modeling choice has important repercussions on the
structure of COPS.

Physical Endurant

Support

Physical Object Non-physical Object
Cognitive Artefact

 Artefact of
Communication

Inscription Expression Conceptualization Collection

Language Linguistic
Expression

 Formal
Expression

Concept
Proposition

Figure 4: The top level of I&DA’s hierarchy of concepts.

3. COPS: A CORE ONTOLOGY OF
PROGRAMS AND SOFTWARE

The COPS ontology indeed classifies a program as a
document whose main characteristic is to allow a
computer to perform information processing. In
section 3.1, we first show how the ontological
framework presented so far contributes to the
definition of these particular documents. In sections
3.2 to 3.5, we then present several sub-ontologies
dedicated to the different aspects of the notion of
“program”.

3.1 The Dual Nature of Programs

Firstly, the distinction made in DOLCE between
Endurants and Perdurants allows us to distinguish
between the program as an Endurant and its
executions, which are Perdurants. Secondly, when
focusing on the program as an Endurant, the
distinctions in I&DA between Inscriptions,
Expressions and Conceptualizations prompt us to
consider three categories of entities commonly
referred to as “programs” (cf. Fig. 5):
– Files, which are Inscriptions written on an

electronic support (e.g. CDs, computer memory,
magnetic tape, etc.). Furthermore, these files
constitute only one type of program Inscription;
a paper listing or an on-screen display of a
program are also program Inscriptions.

– Computer Language Expressions, which are
well-formed formulas (isAWellFormedFormula
Of is a sub-relation of isOrderedBy) in a
Computer Language. These expressions include
Programs.

– DataTypes and Algorithms, which are
Conceptualizations that represent the semantics
of Programs. DataTypes are Concepts on which
rely programming languages (e.g. variable, class,
structure) and which are reflect to diversity of
programming languages (Turner & Eden, in
press). Algorithms describe calculus steps in
terms of these DataTypes (e.g. affecting a
constant to the value of a variable, then adding
another value, etc.).

This approach boils down to considering programs
as Expressions, which is a consensual point of view
in both computer science and philosophy. However,
we consider that this purely syntactical description
of a program is not enough to fully capture the
nature of programs.
Indeed, programs have also a functional dimension,
in that they allow computers to perform Actions
(Computations). This functional dimension is

present in expressions such as “sort program”,
“program for calculating the greatest common
divisor of two numbers” or “image processing
program”. Programs are therefore also Artefacts of
Computation (cf. Fig. 5). As commonly proposed in
philosophy for the characterization of artefacts
(Kroes & Meijers, 2002), we therefore end at a dual
characterization of programs, considered to be both
Computer Language Expressions and Artefacts of
Computation.
In order to account for these dimensions of programs
(and refine them), COPS proposes a sub-ontology of
Actions (cf. 3.2) and a sub-ontology of Languages
(cf. 3.3). We shall see in 3.4 that COPS’s concept of
Program integrates complementary constraints with
regard to this first characterization.

Inscription

File

Directory

Formal Expression

Computer Language
 Expression

Artefact of Computation

Program

Concept

Data Type

Proposition

Action model

Algorithm

Conceptualization

Figure 5: The general structure of COPS.

3.2 A Sub-ontology of Actions

In order to refine the functional dimension of
Programs (and Computer Language Expressions in
general) and specify what these latter allow a person
or a computer to perform, COPS is endowed with an
ontology of Actions (cf. Fig. 6).
On one level, Actions are distinguished according to
(i) the world in which the transformation-Action
occurs (physical (Doing) or non-physical (Non-
physical Action)) and (ii) the Agent performing the
Action (a human (Human Action) or a computer
(Computational Action)).
The first semantic axis relies on a strong hypothesis
dealing with the identity criteria of Actions, namely
that Actions performed in separate worlds of entities
are themselves distinct Actions. The worlds of
entities considered in COPS converge with the
common hierarchy of computer description levels, to
which we add the “knowledge level” postulated by
Newell (1982). This hypothesis prompts
specialization of Non-physical Actions into Symbolic
Actions (which, at the symbolic level, consist in
transforming Expressions - e.g. Executing a
Program, Compiling a Program) and Conceptual
Actions (which, at the knowledge level, consist in
transforming Conceptualizations). Of the latter,
Actions involving knowledge models and which are

taken into account by the CommonKADS
methodology (Bruaux et al., 2005) (e.g. Diagnosing
a car’s failure, Monitoring a patient) are
distinguished from Actions performed on Data and
Data Types constituting the paradigms generated by
the different programming languages (e.g.
Incrementing a Variable, Creating an Object). The
reader should note (cf. Fig. 6) that Discourse Acts
are Non-physical Actions. The latter (considered as
Actions which lead to a change in the state of
knowledge of the addressee of the discourse) are
used in COPS to account for Actions such as
Requests (e.g. querying databases) or Orders for
executing Programs.
 Action

Doing Non-physical
action

Human
action

Computational
action

Discourse act
Symbolic

action

Symbolic
computation

Executing
a program

Compiling
a program

Computation

Conceptual
action

Creating
an object

Incrementing
a variable

Monitoring
a patient

Diagnosing a
car's failure

Figure 6: The sub-ontology of Actions in COPS

3.3 A Sub-ontology of Computer
Languages

In order to refine the syntactical dimension of
Expressions, COPS includes an ontology of
languages. Classically, one distinguishes between
natural languages and formal languages. The formal
languages of interest here are Computer Languages,
i.e. those designed for interpretation by a computer
(microprocessor) or a program. Our
conceptualization of Computer Languages (cf. Fig.
7) is based on the functions (the artefactual
dimension) of the Expressions that they can order.
The first category of computer languages is that of
General Purpose Computer Languages (GPCLs),
i.e. Turing-complete languages dedicated to the
writing of all kinds of programs. The second
category is that of Domain-Specific Computer
Languages (DSCLs), i.e. non-Turing-complete
languages limited to the writing of particular types
of expressions (database queries, operating system
commands, etc.). Programming languages are all
GPCLs that are understandable by humans. GPCLs

that are only understandable by computers or
programs are Low-level Computer Languages (or
low-level programming languages): Machine
Languages (understandable by a processor) and
Byte-code Languages (understandable by a virtual
machine).
 Language

Natural language Formal language

Computer language Logical language

General purpose
computer language

Domain specific
computer language

Query
language

Command
language

Low-level computer
language

Programming
language

Bytecode
language

Machine
language

Figure 7: The sub-ontology of computer languages in
COPS.

3.4 A Sub-ontology of Computer
Language Expressions and Programs

The sub-ontology of Expressions (all of which are
considered here to be well-formed Expressions)
mirrors the sub-ontology of Languages that order
these Expressions. The structure of these two
taxonomies is similar (cf. Fig. 8) and is based on the
functional dimension. An Expression in a GPCL
(General Purpose Computer Language Expression)
allows a computer to perform an arbitrary
Computation (e.g. declaring a variable, calculating
the greatest common divisor of two numbers). By
contrast, an Expression in a Query Language (Query
Expression) or an Expression in a Command
Language (Command Expression) are functionally
different: they do not allow computers to performing
a Computation but allow (human) users to Ordering
(which is a kind of Discourse Act) the performance
of particular Computations, such as, for example,
querying or modifying a set of data. These
Expressions are therefore Artefacts of
Communication and this functional distinction has
repercussions for the definition of COPS’s concept
of Program.
On one side, we consider that a Program
syntactically corresponds only to a particular type of
Expressions orderedBy a Programming Language.
Indeed, the peculiarity of Expressions qualified as
Programs is that they can be either directly executed
by a computer (after a compilation) or taken in

charge by an interpreter. As an example, a program
in the language C is composed of one or more
functions, one of these functions being necessarily
called “main”. By contrast, Expressions such as a
function or an instruction do not possess this entry
point rendering the Expression executable or
interpretable.
On another side, we consider that there exist
executable or interpretable Expressions which are
not Programs. Indeed, in the same lines as Eden and
Turner (Eden & Turner, 2006), we only speak of
Programs in case of Expressions being ordered by
Turing-complete languages (or General Purpose
Programming Languages). Therefore, a SQL query
or a shell command, which are yet interpretable or
executable, are not considered in COPS to be
Programs. To sum up, we define a Program as an
Expression in a Turing-complete language which
can be interpreted or compiled and executed by an
Operating System (Executable Program) or a Virtual
Machine (Byte-code Program).
In addition, crosscutting relations link the different
types of Programs: a Source Code
hasForExecutable (or “can be compiled into
several”) Executable programs, and conversely an
Executable Program or a Byte-code Program
hasForSourceCode a Source Code.

Formal Expression

Artefact of
Computation

Computer Language Expression

Program

Domain Specific Computer
Language Expression

Query
Expression

Command
Expression

General Purpose Computer
Language Expression

Loop

Fonction Source Code

Programming
Language Expression

Low-level Computer
Language Expression

Executable
 Program

Byte-code
Program

Figure 8: A sub-ontology of Programs in COPS.

Note that Operating Systems or Virtual Machines do
not appear in COPS’s sub-ontology of Programs.
The reason is that they are not Programs, but they
are rather made up of a set of Programs. They are
therefore related to software, which are defined in
COPS as collections of Programs, as presented in
the next section.

3.5 A Sub-ontology of Software and
Platforms

This sub-ontology of COPS models entities that are
collections of Programs rather than single
Programs. The concept Library of Programs (cf.

Fig. 9) designates a Collection of Programs and,
potentially, other documents (such as manuals).
By analogy with Program, Software is defined as
both a Library of Programs and an Artefact of
Computation. Since it must be executable, Software
includes at least one Executable (or Interpretable)
Program. Software includes Compilers (whose
function is to allow a computer to translate a Source
Code into an Executable program), Interpreters
(whose function is to allow a computer to execute a
Source Code) and Operating Systems (whose
function is to allow a computer to execute
Executable Programs). This function defines
another class of Artefacts - the Platforms.
A Platform can be a purely material entity
(Hardware Platform) or an entity that is partially
made up of Software (Software Platform). Software
Platforms include Operating Systems and Computers
on which Operating Systems run.
Crosscutting relations link Programs and particular
types of Software: a Source Code isCompilableBy
particular Compilers and/or isInterpretableBy
particular Interpreters; an Executable Program
runsOn a particular Operating System; a Byte-code
Program runsOn a particular Virtual Machine.

Collection Artefact of
Computation

Technical
 Artefact Physical

 Object
Library of Programs

Software

Operating
System

Platform

Software
Platform

Hardware
 Platform

Computer Cluster

Computer Running
Under an OS

Compiler

Interpreter

Virtual
Machine

Figure 9: The sub-ontology of Software and Platforms in
COPS.

4. DISCUSSION

In this section, we compare COPS with other
attempts to elaborate ontologies of programs.
In the philosophy of computer science, Eden &
Turner (2006) recently began creating an ontology
of programs in order to answer questions like: how
can we display differences between hardware and
software entities, and how can we distinguish a
program from a program specification? Even though
the ontological tools used in the present work are
different from Eden & Turner's, it is interesting to
compare the respective conceptualizations. For

example, Eden & Turner (2006) define a program as
a “well-formed expression in a Turing-complete
programming language” - emphasizing the
syntactical dimension of programs but setting aside
their functional dimension (which exists in the
COPS concept of Program). The fact that these two
notions differ suggests that it would be useful to
extend the COPS core ontology to other concepts.
The “web services” community has generated a
variety of initiatives – METEOR-S, OWL-S,
WSMO (Roman et al., 2005) – which seek to
formally describe the discovery, evocation and
orchestration (at different levels of automation) of
such services. These efforts are currently far
removed from COPS’ aims because (i) the work
emphasizes the operational nature of the descriptions
and (ii) these descriptions concerning the function
(the Action in COPS) realized by the service (e.g.
booking a travel ticket) are situated on a meta level,
which allows defining the prerequisites for operation
of the service (e.g. information about the travel has
to be given) and the effects resulting from its
execution (e.g. the ticket price is debited from a
bank account). Within the framework of the
NeuroLOG project, the functionalities targeted in
terms of the evocation and orchestration of software
tools are similar, which is why we plan to extend
COPS to consider this level of description.
In the software engineering domain, Welty (2005)
has suggested developing Comprehensive Software
Information Systems (for software maintenance) by
using an ontology which enables a detailed,
conceptual description of software. This ontology
could be considered as an extension of the COPS
Expression sub-ontology, as it enables description at
the code level and consideration of all the syntactical
constructions available in programming languages.
On the other hand, it supposes (strangely) that the
entities playing data and result roles are real world
entities (e.g. persons) and not conceptualizations
modeling the real world. In COPS, we chose to
follow (Turner & Eden’s, in press) idea whereby
program semantics are based on data and data types
which model real world entities - for example (in the
object paradigm), an instance which models an
individual person or a class which models a set of
persons.
Other work in the software engineering domain
(Oberle et al., 2005) has led to publication of CSO
(the Core Software Ontology) in order to better
develop, administer and maintain complex software
systems. The ontology-building approach is similar
to ours, with re-use of the DOLCE high level
ontology and core ontologies such as DnS
(“Descriptions & Situations”, Gangemi & Mika,
2003). COPS and CSO also share some modeling
choices, such as the distinction between three

entities (called Inscriptions, Expressions and
Conceptualizations in COPS). However, we can
note some different modeling choices. For example,
in CSO (and assuming that every program can be a
data item for another program), the Data concept
subsumes the Software concept. In contrast, COPS
assimilates the Data concept to a participant role (cf.
2.2) which can be played by arbitrary entities -
Programs, for example. In fact, whereas CSO
considers only one type of Action (namely
“computational activities” whose participants are
necessarily Inscriptions (in the sense of COPS)
inscribed on some sort of hardware), COPS
distinguishes several categories of Actions according
to the nature of the participant entities (cf. 3.2).
COPS’ richer framework allows it to define a
Program Compilation as an Action in which at least
two Programs participate. Lastly, we can note that
the functional dimension of programs is absent in
CSO.
Those comparisons show that some core ontology
proposals for the software domain do exist but that
the various efforts are not yet coordinated and that
the existing ontologies display some important
differences in terms of both range and structure.

5. CONCLUSION

In this paper, we have presented the foundations of a
core ontology of programs and software (COPS)
derived by specializing the DOLCE foundational
ontology and whose goal is to help structure more
specific programming domains. In this connection,
the next application of COPS within the NeuroLOG
project, to help conceptualizing the domain of image
processing tools, will provide an opportunity for
evaluating the modeling choices made for the
building of the ontology.
COPS’ current conceptualization reveals a domain
populated by entities having various nature. Indeed,
there are temporal entities (program executions),
physical entities (program inscriptions), plural
entities (program collections), functional entities
(program execution platforms) and, lastly, dual-
nature (syntactic and functional) entities - the
programs themselves. COPS’ model-building
feedback confirms the fact that ontological resource
re-use (enabling modeling choices at several
abstraction levels) is necessary for controlling the
complexity of such domains.
In its current version, COPS only covers a part of
this domain. Work in process is extending the
ontology in several directions. A first goal is to
extend the programs semantics: links with
processing (functions) only give an account of the

“what”, so it lacks the “how” - requiring us to take
into account algorithms and data types which have
only been positioned (cf. Fig. 5) and not precisely
analyzed. A second goal is to enlarge COPS to
program specifications: we plan to re-use the
“problem resolution model” notion in OntoKADS
(Bruaux et al., 2005) to extend COPS to the more
general class of action models performed by
computers using programs.

ACKNOWLEDGEMENTS

This work was partially financed by the NeuroLOG
project (ANR-06-TLOG-024) under the French
National Research Agency’s Software Technologies
program (http://neurolog.polytech.unice.fr).

REFERENCES

Bottazzi E., Catenacci C., Gangemi A. & Lehmann J. ,
2006. From Collective Intentionality to Intentional
Collectives: an Ontological Perspective. In Cognitive
Systems Research, Special Issue on Cognition, Joint
Action and Collective Intentionality, Elsevier, 7(2-3),
p. 192-208.

Bruaux S., Kassel G. & Morel G., 2005. An ontological
approach to the construction of problem-solving
models. In P. Clark and G. Schreiber (eds), In the 3rd
International Conference on Knowledge Capture (K-
CAP 2005), ACM, p. 181-182. A longer version is
published as LaRIA’s Research Report 2005-03.
Available at: http://hal.ccsd.cnrs.fr/ccsd-00005019 .

Eden A. H. & Turner R., 2006. Problems in the Ontology
of Computer Programs. Technical Report CSM-461,
ISSN 1744-8050, Department of Computer Science,
University of Essex. From www.eden-
study.org/articles/2006/problems-
ontology_programs_csm461.pdf.

Fortier J.-Y. & Kassel G., 2004. Managing Knowledge at
the Information Level: an Ontological Approach. In
Proceedings of the ECAI'2004 Workshop on
Knowledge Management and Organizational
Memories, Valencia (Spain), p. 39-45.

Gangemi A. & Borgos S. (eds), 2004. Proceedings of the
EKAW’04 Workshop on Core Ontologies in Ontology
Engineering, Northamptonshire (UK). From
http://ceur-ws.org (Vol-118).

Gangemi A. & Mika P., 2003. Understanding the
Semantic Web through Descriptions and Situations. In
R. Meersman et al. (eds), Proceedings of the
International Conference on Ontologies, Databases
and Applications of Semantics (ODBASE 2003),
Catania (Italy), 2003.

Kroes P. & Meijers A., 2002. The Dual Nature of
Thechnical Artifacts – presentation of a new research
programme. In Techné, 6(2) Winter 2002, p. 4-8.

Masolo C., Borgo S., Gangemi A., Guarino N., Oltramari
A. & Schneider L., 2003. The WonderWeb Library of
Foundational Ontologies and the DOLCE ontology.
WonderWeb Deliverable D18, final report (vr. 1.0, 31-
12-2003).

Newell A., 1982. The Knowledge Level. In Artificial
Intelligence 18, p. 87-127.

Niles I., Pease A., 2001. Towards a standard upper
ontology. In Proceedings of the International
Conference on Formal Ontology in Information
Systems (FOIS’2001). ACM Press., p 2-9.

Oberle D., Lamparter S., Grimm S., Vrandecic D., Staab
S. & Gangemi A., 2006. Towards Ontologies for
Formalizing Modularization and Communication in
Large Software Systems. In Applied Ontology, 1(2), p.
163-202.

Roman D., Keller U., Lausen H., de Bruijn J., Lara R.,
Stollberg M., Polleres A., Feier C., Bussler C. & Fensel
D., 2005. Web Service Modeling Ontology. In Applied
Ontology 1, p. 77-106.

Steimann F., 2000. On the representation of roles in
object-oriented and conceptual modelling. In Data and
Knowledge Engineering, 35, p. 83-106.

Temal L., Lando P., Gibaud B., Dojat M., Kassel G. &
Lapujade A., 2006. OntoNeuroBase: a multi-layered
application ontology in neuroimaging. In Proceedings
of the 2nd Workshop: Formal Ontologies Meet
Industry: FOMI 2006, Trento (Italy).

Turner R. & Eden A.H. (in press). Towards a
Programming Language Ontology. In G. Dodig-
Crnkovic and S. Stuart (eds.), Computing, Philosophy,
and Cognitive Science, Cambridge, UK: Cambridge
Scholars Press.

Welty C., 1995. An Integrated Representation for
Software Development and Discovery. Ph.D. Thesis,
RPI Computer Science Dept. July, 1995. From
http://www.cs.vassar.edu/faculty/welty/papers/phd/

