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ABSTRACT

In this paper, we study grid job submission latencies. To-
gether with outliers, the latency highly impacts performances
on production grids, due to its high values and variations.
It is particularly prejudicial for determining the expected
duration of applications handling a high number of jobs.

In previous work, a probabilistic model of the latency has
been used to estimate an optimal timeout value considering
a given distribution of jobs latencies. This timeout value is
then used in a job resubmission strategy.

The purpose of this paper is to evaluate to what extent up-
dating this model with relevant contextual parameters can
help to refine the latency estimation. In the first part of
the paper, we study the validity of parameters along several
weeks. Experiments on the EGEE grid show that perfor-
mance can be improved by the update of model parameters.
In the second part, we study the influence of the resource
broker or the computing site and the day of the week. We
experimentally show that some of them have a statistically
significant influence on the jobs latency. We exploit this con-
textual information in the perspective of proposing a reliable
job submission strategy.
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1. INTRODUCTION

Grids are powerful tools for large scale medical studies and
specifically for analyzing medical images [1]. These tools
allow compute intensive processings such as bio-modeling
(cardiac modeling, MRI simulation [2]) and simulation for
surgery planning. With grids, large database can be pro-
cessed e.g. to build personalized atlases or to conduct epi-
demiological and statistical studies [12, 5]. Image indexing
and retrieval similarly benefit from federated databases [13].

However, the behavior of production grids is highly variable
and they are subject to faults. In particular, the latency,
measured as the time between the submission of a job and its
running start, is very high (mean of 5 minutes in our experi-
ments) and highly variable (standard deviation in the order
of 5 minutes). Compared to other application domains, the
biomedical field applications involves mainly relatively short
jobs (execution time in the order of few minutes) thus lead-
ing the latency to have a high impact on performances. The
aim of this work is to study the latency of the grid in order

to improve job submissions and estimation of performance.

We adopt a probabilistic approach for capturing the variabil-
ity of production grids. Similar probabilistic models have
been proposed to estimate timeouts in other complex sys-
tems [18, 10]. Previous works [8] have shown the validity
of such a model to capture the overall behavior of a large
scale grid infrastructure. However these studies have been
made on a short period of time thus hiding the temporal
variability of workload conditions. In this paper, we con-
duct our study during several weeks in order to study the
model temporal validity.

We also aim at refining our grid model with more local and
dynamic parameters from the execution context. Each job
can be characterized by its execution context that depends
on the grid status and may evolve during the job life-cycle.
The context of a job depends both on parameters internal
and external to the grid infrastructure. The internal context
corresponds to parameters such as the computers involved
in the Workload Management System (WMS) of a specific
job. It may not be completely known at the job submission
time. The external context is related to parameters such as
the day of the week and may have an impact on the load
imposed to the grid. Preliminary works [6, 11] have shown
the validity of this approach by extracting parameters that
have an influence on the latency.

Our final goal is to improve jobs execution performance on
grids. This requires taking into account contextual informa-
tion and its frequent update.

2. RELATED WORKS

Several initiatives aim at modeling grid infrastructure Work-
load Management Systems (WMS). In [9], correlations be-
tween job execution properties (job size or number of proces-
sors requested, job run time and memory used) are studied
on a multi-cluster supercomputer in order to build models
of workloads, enabling comparative study on system design
and scheduling strategies. In [15], authors make predictions
of batch queues waiting time which improve the total exe-
cution time.

Taking into account contextual information has been re-
ported to help in estimating single jobs and workflows exe-
cution time by rescheduling. Feitelson [4] has observed cor-
relations between run time and job size, number of clusters
and time of the day. In [14], the influence of changes in
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Figure 1: EGEE job life cycle

transmission speed, in both executable code and data size,
and in failure likelihood are analyzed for a better estimation
of end time of sub-workflows. This information is used for
re-scheduling jobs after fault or overrun.

Authors of [16] analyze job inter-arrival times, waiting times
in the queues, execution times and data exchange sizes.
They conducted experiments on the EGEE! grid on sev-
eral VOs (Virtual Organizations) and studied the influence
of the day of the week and the time of the day. Their con-
clusion is that there is an increase of the load at the end of
the day but that it is difficult to extract a precise model of
this behavior with respect of the day or the time.

To refine grid monitoring, [17] presents a model of the in-
fluence between the grid components and their execution
context (system and network levels), experimented on the
Grid’5000 French national platform.

3. EXPERIMENTAL PLATFORM

Our experiments are conducted on the biomed VO of the
EGEE production grid infrastructure. With 40,000 CPUs
dispatched world-wide in more than 240 computing cen-
ters, EGEE represents an interesting case study as it ex-
hibits highly variable and quickly evolving load patterns that
depend on the concurrent activity of thousands of poten-
tial users. Even if the infrastructure is relatively homoge-
neous from the OS point of view (all host are running Red-
Hat based Linux), important architecture and performance
variations are expected among the worker nodes (64/32 bit
machines, single/multiple processors, different speeds, sin-
gle/multiple cores).

On the EGEE grid, when a user wants to submit a job from
her workstation, she connects to an EGEE client known as
a User Interface (see figure 1). A Resource Broker (RB)
queues the user requests and dispatches them to the avail-
able computing centers. The gateway to each computing
center is one or more Computing Element (CE). A CE hosts
a batch manager that will distribute the workload over the
Worker Nodes of the center. Different queues handle jobs
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with different forecast wall clock times. The policies for
deciding of the number of queues and the maximal time as-
signed to each of them are site-specific.

During its life-cycle, a job is characterized by its evolving
status. If everything happened as expected, the job is then
completed. Otherwise, it might be aborted, timed-out or in
an error status depending on the type of failure.

The latency is measured as the time between the submission
time of a computation job and the beginning of its execution,
denoted as (ttot — trun) in figure 1. As said in the introduc-
tion, the mean latency, its variations and the execution time
of most jobs from the biomed VO present comparable val-
ues. Thus, the latency and its variations have an important
impact on the performance. A precise model of the latency
is needed to handle failed jobs and refine submission strate-
gies.

4. USING LATENCY MODELSFOR OPTI-
MIZATION

Models of the grid latency enable the optimization of job
submission parameters such as jobs granularity or the time-
out value needed to make the WMS robust against system
faults and outliers.

Properly modeling a large scale infrastructure is a challeng-
ing problem given its heterogeneity and its dynamic behav-
ior. In a previous work, we adopted a probabilistic ap-
proach [7] which proved to improve application performances
while decreasing the load applied on the grid middleware by
optimizing jobs granularity.

In [8], we have shown how the distribution of the grid latency
impacts the choice of a timeout value for the jobs. We model
the grid latency as a random variable R with probability
density function (pdf) fr and cumulative density function
(cdf) Fr. The optimal timeout value is obtained by min-
imizing the expectation of the job execution time J which
can be expressed as a function of R, the timeout ¢, and the
proportion of outliers p:

1 foo too
E(](too) = m/(; ufR(u)du + m —teo
1)

Figure 2 shows the cumulative density of the latency (Fr)
computed from a set of 5800 measurements. This cdf and
the computed ratio of outliers are introduced in equation 1 in
order to determine the expected execution time with respect
to the timeout value E; (see figure 3). The minimum of the
curve gives the optimal timeout value (here, toc = 528 s
leading to E; = 494s).

5. EXPERIMENTAL DATA

To study the grid latency, measures were collected by sub-
mitting a very large number of probe jobs. These jobs, con-
sisting in the execution of a negligible duration /bin/hostname
command, are only impacted by the grid latency. In the re-
mainder we make the hypothesis that the users job execution
time is known and that therefore only the grid latency varies
significantly between different runs of the same computation
task. To avoid variations of the system load coming from our
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Figure 2: Cumulative density function (Fr) of the
latency
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Figure 3: Expected execution time with respect to
the timeout value.

monitoring, a constant number of probes was maintained
inside the system at any time of the data collection: a new
probe was submitted each time another one completed. For
each probe job, we logged the job submission date, the job
status and the total duration. The probe jobs were assigned
a fixed 10000 seconds maximal duration beyond which they
were considered as outliers and canceled. This value is far
greater than the average latency observed. We also con-
sidered as outliers the failed jobs, assuming that they were
resubmitted at fo,, as the other outliers.

In a previous work [6], we collected a log gathering 5800 job
traces in September 2006 (denoted further as 2006-I1X). In
this paper, we added 5093 job traces (with a ratio of outliers
21%) acquired from:

e September 5th 2007 until September 27th 2007 (weeks
2007-36 to 2007-39)

e December 12th 2007 until December 17th 2007 (week
2007-50)

e December 21th 2007 until January 22th 2008 (weeks
2007-51 to 2008-03)

The discontinuity of the periods in the new data set is due
to unscheduled failures in the acquisition system and does
not have any relations with authors choices.

6. ALONG THE WEEKS

Figure 4 shows the cumulative density function of the la-
tency for the different weeks and for the whole period of
2007-2008. The curves covering the period 2007-2008 present
a similar profile with steps coming from the waiting time of
the jobs in the resource brokers (RB). One of the hypothesis
is that they could be due to the internal scheduling algo-
rithm of resource brokers. Another possible cause might be
implementation flaws in the RB code. Those steps have also
been observed in the vlemed VO of the EGEE grid.

An interesting way to compare those curves is to consider
the differences between the optimal timeout values that they
lead to (computed using equation 1). Figure 5 shows the ex-
pectation of the execution time for the different weeks. De-
spite the fact that the curves have different profiles, the op-
timal timeout values are visually in the same interval around
400s.

These values are detailed in table 1: the optimal value for
2006 is 528s while values for 2007-2008 range between 422s
and 491s. The table also presents, for each period of time,
the mean value and the standard deviation of the latency
R. In most cases, a reduction of the mean latency corre-
sponds to a decrease of the standard deviation. Finally the
optimal expected execution time is shown. Assuming that
the optimal timeout value has been computed in September
2006 (528s), we compute, in table 2, the resulting expecta-
tion of execution time and the relative difference with the
optimal value computed week by week in order to measure
the impact of parameters chosen earlier instead of the opti-
mal one. The relative differences are up to 8%. It happens
that this timeout value is greater than all optimal values for
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Figure 4: Cumulative density function of the latency
for each week, computed on completed jobs.
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Figure 5: Expectation of job execution time with
respect to the timeout value ({s). The minimum
of each curve gives the best timeout value for the
considered data set.
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Figure 6: Close-up around the optimal values from
figure 5

date R o(R) outliers bestto | Es(teo)
2006-1X | 570s  886s 5% [528s| | 494s
2007/08 | 469s  723s _ 17% __ 474s | 500s
2007-36 | 446s 7485 24%  423s | 502s
2007-37 | 5065 8485 33% 6065
2007-38 | 447s 6825  24%  428s | 522s
2007-39 | 489s 74ls  32%  436s | 585s
2007-50 | 660s 1046s  18%  467s | 628s
2007-51 | 4785 510s  13% 510s
2007-52 | 443s 5825 13% 482 | 469s
2007-53 | 375s 2385 31% 4325 | 58ls
2008-00 | 4545 6995 14%  484s | 468s
2008-01 | 434s 317s  13%  485s | 491s
2008-02 | 4185 547s  12% 433 | 435s
2008-03 | 538s 11965 10%  4T4s | 413s

Table 1: Mean and standard variation of the latency,
fraction of outliers, best timeout value and minimal
expectation of execution time. These quantities are
computed for the 2006 period, for the 2007-2008 pe-
riod and for all weeks in the 2007-2008 period. The
minimal optimal timeout value is 422 s while the
maximal one is 491 s.



date E;(528s) AE; date | E;(528s) AE;

2007-36 528s 5.2 % || 2007-52 477s 1.7 %
2007-37 648s 7.0 % || 2007-53 623s 71 %
2007-38 544s 4.2 % || 2008-00 475s 1.5 %
2007-39 631s 7.9 % || 2008-01 493s 0.4 %
2007-50 652s 3.9 % || 2008-02 441s 14 %
2007-51 514s 0.9 % || 2008-03 418s 1.2 %

Table 2: In this experiment, the timeout value from
the period of September 2006 has been used (528s).
For each week of the 2007-2008 period, we present
the expectation of the execution time and the rela-
tive difference with the optimal one.

date E;(422s) AE;% | E;(491s) AE;%

2007-36 505.5 0.7% 527.1 5.0%
2007-37 605.9 0% 632.2 4.3%
2007-38 524.8 0.5% 530.5 1.6%
2007-39 602.9 3.1% 616.8 5.5%
2007-50 T18.7 14.5% 642.3 2.3%
2007-51 594.9 16.7% 509.6 0%

2007-52 491.2 4.8% 470.9 0.4%
2007-53 593.7 2.1% 600.0 3.2%
2008-00 501.9 7.2% 470.0 0.4%
2008-01 516.7 5.2% 493.1 0.4%
2008-02 437.0 0.6% 437.2 0.6%
2008-03 419.1 1.5% 414.8 0.5%

Table 3: In this experiment, we focus on data from
the period 2007-2008. As determined in table 1, the
minimum timeout value is 422s and the maximum is
491s. For these extreme values, the new expectation
of execution time and the relative difference with the
optimal value are presented.

the period 2007-2008. The highest differences are obtained
when the ascending slope of figure 5 are the highest, which
is directly related to the fraction of outliers.

Furthermore, we took the minimal and the maximal of time-
out values among the different weeks : 422 s and 491 s. We
present the expected execution time for each of these values
and the relative differences in table 3. In the case of the
maximal timeout value, relative errors are below 6% while
in the case of the minimal timeout value, relative errors are
up to 17%. This is clearly explained by the shape of the
curves on figure 5: the slope of the decreasing part is higher
than the slope of the increasing part of each curve. Thus,
an overestimation of the timeout value is better than an un-
derestimation, if this overestimation is not too high, which
must be quantified. As a conclusion of this part of the study,
actualization of the timeout value may improve the total ex-
ecution time, up to 17%.

7. LATENCY CONTEXT PARAMETERS

In order to refine our latency model, we consider the param-
eters of the execution context that could explain its high
variability. Two different jobs submitted on the EGEE grid
may differ by the path they follow from their submission site
(UI) to the execution site (WN). Different hardware char-

acteristics and software configuration/version may influence
the performance. The load of the infrastructure is also an
important factor and may depend on the behavior of the
different users and the nature of the experiments they are
conducting. Not only users are to be considered but also ad-
ministration operations that influence the grid status. Simi-
larly, time context (working or not-working periods) is to be
considered. Failures may have different explanations such as
hardware breakdowns, load and other external factors such
as extremely hot weather conditions leading to air condi-
tioning breaking down.

Going into the details of all the local parameters of the prob-
lem is intractable due to the size and the availability of such
information. The level of detail that can be exploited de-
pends both on the availability of the contextual information
and the needs of the model.

We thus restrict our study to context parameters that could
realistically be used for estimating job latencies and opti-
mizing job resubmission strategies.

In this paper, we consider high level information such as
Resource Broker, Computing Element and queues used. We
also study the time context using the day of the week. Simi-
larly, in a future work, cities temperature may be a sufficient
and accessible information to further optimize it.

7.1 ResourceBroker parameter (RB)

The probe measures acquired during three weeks in Septem-
ber 2006 (log 2006-IX) were submitted to 3 different Re-
source Brokers (RBs):

e a French one (grid09.lal.in2p3.fr),
e a Spanish one (egeerb.ifca.org.es) and

e a Russian one (1cgl6.sinp.msu.ru).

Figure 7 displays the cumulative density function of the la-
tency of the probe jobs sent to each of the RBs as well as
the one of the submission time considering all RBs.

The 3 RBs exhibit quite different behaviors that need to be
quantified. Table 4 displays:

e the optimal estimated timeout value;

e the difference between this value and the global ref-
erence value obtained using all measurements without
distinction;

e the minimal expected execution time;

e the expected execution time if the timeout is set to the
global reference value;

e and the difference with the optimum.

The optimal timeout values significantly differ and the most
distinct is the one associated to the French RB (variation
of 31%). However, the expected execution time varies by



all RBs RB fr RBes | RBru
optimal oo | toorer = 556 s 729 s 546 s 506 s
Atoo 0% 31% 2% 9%
best E 479.125 s 483.7 s | 445.2 s | 476.2 s
E(tooref) 479.125 s 488.8 s | 4459 s | 4779 s
AE; 0% 1% 0.2% 0.4%

Table 4: Study of the influence of the Resource Bro-

a much smaller amount (1% maximum). This is related
to the fact that in this case (relatively low outliers ratio
and rather homogeneous infrastructure), slightly overesti-
mating the timeout has little impact on the execution time.
It should be noted that an underestimation is impacting the
execution time much more though as can be seen on figure 8.

The period of this experiment presented a very low level
of outliers, in the order of 3%. This implies low increasing
slope of expectation of execution time after the minimum
value (see figure 8). To simulate a more variable infrastruc-
ture, we applied the model considering a variable level of
outliers between the different RBs (p = 20%, 3% and 0%
respectively). These errors are realistic as error conditions
regularly lead to similar values (p = 21% was observed in
2007/08). The results are summarized in the following table:
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Figure 7: Cumulative density function for the dif-
ferent Resource Brokers: France (fr), Spain (es) and
Russia (ru).
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Figure 8: Expectation of execution time for the dif-
ferent Resource Brokers.

all RBs RB fr RBes | RBru
P 7% 20% | 3% 0%
optimal teo | toorer = 868 s 551 s 546 s 865 s
best Ej 452.3 s 639.8 s | 445.2 s | 451.7 s
E j(tooref) 452.3 s 691.7 s | 456.2 s | 451.7 s
AFE;y 0% 8% 2.5% 0%

In this case, the model consistently reports growing execu-
tion time disruptions with the increase of the number of out-
liers. The resubmission strategy still rather efficiently cope
with the errors as the execution time variation does not ex-
ceed 8%. Taking into account the submission RB can help
in adapting the optimal timeout choice. The more variable
the infrastructure, the more valuable the optimization.

7.2 Computing Element (CE)

In a computing center, the batch submission system is usu-
ally configured with several queues. The influence of the
Computing Element (CE) and the associated queues, later
abbreviated as CE-queue, is considered in this section. The
same methodology than with RBs in section 7.1 could be
envisaged but a significant difference is that the number of
CE-queues is much larger than the number of RBs in the
same set of data: we had 92 CEs and queues and only 3
RBs. It might thus be relevant to group similar CE-queues
to obtain fewer classes. As can be seen in figure 9 many of
the 92 CE-queues have similar cdfs while others are more
singular. The idea we promote here is to group CEs and
queues that have similar properties into different classes.
To ensure statistical significance, CE-queues with less than
30 probe measures were removed from the study. Thus, 60
CE-queues out of the 92 were remaining.

7.2.1 Classification of the CE and queues
Figure 9 suggests that 3 classes can be identified among the
CEs. A k-means classification was thus done on the cumu-
lative density functions of the CEs and the obtained classes
are identified with distinct colors on the figure. Centroids of
the classes are plotted in black.

The first class of CEs, pictured in blue, has the highest per-
formance in average. The median of its centroid is 237 sec-
onds. It is composed of 15 CEs. The second class of CEs,
pictured in green, is composed of 35 CEs. The median of
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Figure 9: Classification in 3 classes of the cumulative
density functions of the grid latencies by CE. Cen-
troids of the k-means classes are plotted in black.

CE group Median (s) | Expect. (s) | Stdev (s)
not legpbs (blue) 237 436 880
lcgpbs (green) 373 461 493
other (red) 652 1132 1396
Whole data 363 559 850

Table 5: First moments and median of the grid la-
tency w.r.t the execution CE class

its centroid is 373 seconds, which corresponds to a 1.6 ratio
with respect to the fastest class. Finally, the slowest class,
pictured in red, is composed of 10 CEs and the median of
its centroid is 652 seconds. Table 5 compares the median,
expectation and standard-deviation of the grid latency for
each CE class. It reveals that even if the first (blue) class of
CEs has the highest performance in average, it is also more
variable than the second (green) class. The third (red) class
is the most variable. The impact of variability on the per-
formances of an application depends on the number of sub-
mitted jobs and on the performance metric. In some cases
(high number of jobs), it would be better to submit jobs on a
less variable CE class, even if it has the lowest performance
in average.

A noticeable feature of the green class is that almost all of
its CEs contain the lcgpbs string in their names. In this
class, the only CE whose name does not contain this string
is plotted in cyan on figure 9 and is close to the border of
this class. In the blue class, no CE contains this string in its
name and in the slowest class, 7 CEs have this string in their
name. This shows that the lcgpbs string name is informa-
tive in itself although the reasons are not necessarily known
(it may correspond to a specific middleware version deployed
on some of the CEs in this heterogeneous infrastructure).

7.2.2 Testing different number of classes for CE-queues

Different aggregations of CE-queues were tested based on
their cdf using the k-means classification algorithm with
k = 2 to 10 classes. For each CE-queue entity, the cdf has
been computed. From this cdf the optimal timeout value is
computed , by minimizing equation 1. Figure 10 shows the
repartition of the timeout values in the classes. The width
of each box is proportional to the number of CE-queues in
the class.

In order to measure if the classes are statistically discrimi-
nant, we have tested the hypothesis Ho “all sets have equal
mean and equal variance” using ANOVA (ANalysis Of VAri-
ance). The results are reported in the following table where:

Df: degree of freedom

F': ratio statistic of the between groups variance to the within
groups variance

p value: the significance level of Hy

symbol ***: means rejection of hypothesis Hy with high
confidence (level 1% of p < 0.01)

nb. of || Df F | pvalue | Hop
classes rej.
2 1] 13.9 [ 4.1079% | **x
3 2| 10.0 | 1.10704 | *x*x
4| 3| 14.1 | 2.10707 | *x*x
5 4103 | 1.10706 | **x
6 5| 8.4 | 210706 | **x
71 6] 10.9 | 1.10798 | *xx
8 71 9.6 | 2.10708 | **x
9 8| 9.5 | 810709 | **x
10 9| 83| 3.10708 | **x

The result of the ANOVA test shows that the Ho hypothesis
is strongly rejected in all cases at a level less than 1% (be-
tween 8.1077% and 0.04%). The best result is obtained for
9 classes but the gain is not so high. Note that the ANOVA
test only shows that the hypothesis Hy is rejected: this does
not necessary imply that all classes differ from each other.

In the case of 2 classes, these classes are statistically discrim-
inant. But for all other cases, further tests must be done in
order to determine how many classes are independent.

7.2.3 Refining the ANOVA analysis

Let us look, for example, at the case of classification into
3 different classes (classes 0, 1 and 2). Using ANOVA, if
we test classes 1 and 2, we observe that they do not differ
significantly: F = 0.2334 (p < 0.6338). Building a new
class, class 142, from classes 1 and 2, we now test class 0
against class 1+2 and obtain that they differ significantly:
F =19.651 (p < 3.003e—05). We observe that grouping two
classes after the classification k = 3 gives a similar although
slightly better result than the classification k = 2.

The optimal timeout for the 2 populations (classes 0 and 3)
are toog = 779s and toc3 = 881s respectively (see figure 12).
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Figure 10: Timeout values repartition after k-mean
classification into 2 classes (on top) and 3 classes (on
bottom) of CEs and queues.
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Figure 12: Cumulative density functions of latency
with respect to time (in seconds). This figure is ob-
tained from the k-means classification into 3 classes.
We grouped the last 2 classes into a single one so
that we have 2 classes: the initial class 0 (in red)
and new class 3 (in green) resulting of the merging
of classes 1 and 2. Each curve corresponds to the cdf
of one CE-queue. The curves in blue and magenta
correspond to the cdf of the centroid of class 0 (in
blue) and class 3 (in magenta).

Figure 13 shows the errors computed between the best E;
and Ej(to), where to if computed from the whole class.

7.2.4 Discussion

The order of magnitude of the grid latency thus appears
to be correlated to the execution CE. It is relevant because
the CE is directly related to the job queuing time as a CE
exactly corresponds to a batch queue. Variations of mid-
dleware, system versions and of the availability of the site
to VOs may explain the differences observed among the 3
different classes while variations inside a given class may be
coming from the load imposed by the users and the per-
formance of CEs host hardware. However, in general, the
execution CE is only known after the job submission, dur-
ing the scheduling procedure. Thus, this information could
only be exploited for parameters that can be updated once
the job has been submitted, as for instance the timeout value
or the application completion prediction.

7.3 Day of the week

Considering that the load of the grid may depend on the
human activity (users are often starting to submit jobs dur-
ing their work time), we have, as a first step, considered
the influence of the day of the week on the latency. We
are expecting to have different behaviors during the week
than during the week-end, considering that in most west-
ern countries, Saturdays and Sundays are non working days.
The considered data is presented in section 5 and concerned
several weeks.

Figure 14 shows the different expectations of latency for each
day of the week. The different days of week present different
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Figure 13: Errors measured between best E; and
E;(t), where t if computed from the whole class.
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Figure 14: Expectation of job execution time for
each day of the week.

behaviors. However, there is no clear distinction between
week and week-end, even if we observe that the two extrema
curve correspond to Saturday and Sunday. An explanation
is that we can submit an experiment on Friday that will
automatically submit the jobs for several days and that there
is probably a stress effect on Friday’s submissions.

To quantify the influence of the day of the week, we com-
pute, for each week and each day of the week, the optimal
timeout value, according to equation 1. These values are
plotted on figure 15 with respect to the day of the week.
As confirmed by ANOVA analysis, there is no significant
difference between the days of the week.

We also present on figure 16 the evolution of the optimal
timeout value with respect to the week of the experiment,
for each day of the week. There is no evidence of absolute
pertinence of the day of the week in this figure. Even the
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Figure 15: For each day of the week and for each
week, the best timeout value is computed. We have
plotted boxes for each day of the week. According to
ANOVA, there is no significant difference between
the days of the week.

period between Christmas and New Year’s eve is not really
separated from the others. However, in figure 17, we observe
that, in most weeks, there is a decrease of best timeout value
between Tuesday or Wednesday and Thursday followed by
an increase until Friday or Saturday. This profile informa-
tion needs further investigation to be exploited.

This time context study may be completed by the analysis
of the hours in the day.

8. CONCLUSION

We have shown that some context parameters related to
the EGEE production grid such as Resource Brokers and
CE-queues have an influence on the expected job execu-
tion time. Moreover, we have shown that we can group
CE-queues into classes that are statistically different, thus
reducing the number of data to be analyzed. The method-
ology used could be applied to other grids by replacing CEs
and RBs by the equivalent workload management services.
In the DIET middleware [3] for instance, it could correspond
to Master Agents (MA) and Local Agents (LA).

The experiment on the influence of the day of the week shows
that it has a hardly relevant impact. The hour of the day
could be considered alternatively.

The study along several weeks shows that variations of the
load conditions over long periods of time make it necessary
to update the model parameters along time. Future work
will focus on strategies to perform this update.

Moreover, parameters of the execution context such as the
Resource Broker, class of Computing Center and queues and
time need to be studied over long period of time to determine
(i) if there are global trends observable during several weeks
and (ii) how frequently the experimental models need to be
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best timeout value (s)

350 | ]
30} i

250 |+ <

0 L L L L L
Mon Tue Wed Thu Fri Sat Sun
day of the week

Figure 17: Each curve corresponds to a week of the
experiment. The optimal timeout value is plotted
with respect to the day of the week.

updated.
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