Software technologies for integration of process and data in medical imaging

A core ontology of instruments used for neurological, behavioral and cognitive assessments

Bénédicte Batrancourt

INSERM/CNRS Univ. Pierre et Marie Curie, Paris, France

Michel Dojat

INSERM, Univ. Joseph Fourier, Grenoble, France

Bernard Gibaud

INSERM/INRIA/CNRS/ Univ. Rennes 1, France

Gilles Kassel

Univ. Jules Verne of Picardie, Amiens, France

http://neurolog.polytech.unice.fr

NeuroLOG ANR-06-TLOG-024

Neurolog

Project motivations

Software technologies for integration of process, data and knowledge in medical imaging

A tool for NeuroSciences

Development of an open software architecture:

- Management and access to partly structured, heterogeneous and distributed data.
- Ease resources sharing (data sets and processing tools)
- Foster collaborative work (multi-centre studies)
- Design of an application ontology as a conceptualization of reference:
 - Following a multi- layer and component approach (Temal *et al.*, 2006)
 - A core ontology for images and regions-of-interest is in use (Temal *et al.*, 2008)

NeuroLOG ANR-06-TLOG-024 6th International Conference on Formal Ontology in Information Systems (FOIS2010)

Current work objectives

3

Software technologies for integration of process, data and knowledge in medical imaging

- Define a model supporting the investigation of correlation between image (MRI) data and neuropsychology data, e.g.,
 - "Find all patients with a low memory score and with T1-weighted images presenting a grey matter loss in the temporal lobes"
- Design an ontology of instruments used to assess the neurological state of the subjects as well as their cognitive and behavioral performances

• Observation:

- No such ontology already exists
- Its design requires to introduce abstract concepts (e.g., capacities, functions, behaviours, artefacts) whose characterization in formal ontologies is still an open issue

- Subject data acquisition (SDA) instruments
- Ontological reference framework
- Core ontology of instruments (per se)
- Core ontology of scores
- Conclusion

An informal model

Software technologies for integration of process, data and knowledge in medical imaging

We have measurement situations with:

A measured object

- A subject (patient or healthy volunteer)

An instrument

- A "subject data acquisition" instrument
- Enables to measure or assess the subject's state along some dimension

A measurement

- An "instrument-based assessment"
- Performed by a healthcare professional

Results of measurement

- Scores (raw, corrected by norms)
- Structured according to scales

A questionnaire : Beck Depression

Software technologies for integration of process, data and knowledge in medical imaging

1. Sadness

- 0 I do not feel sad.
- I I feel sad much of the time.
- 2 I am sad all the time.
- 3 I am so sad or unhappy that I can't stand it.

2. Pessimism

- 0 I am not discouraged about my future.
- I feel more discouraged about my future than I used to be.
- 2 I do not expect things to work out for me.
- 3 I feel my future is hopeless and will only get worse.

3. Past Failure

- 0 I do not feel like a failure.
- I have failed more than I should have.
- 2 As I look back, I see a lot of failures.
- 3 I feel I am a total failure as a person.

4. Loss of Pleasure

- 0 I get as much pleasure as I ever did from the things I enjoy.
- I don't enjoy things as much as I used to.
- I get very little pleasure from the things I used to enjoy.
- 3 I can't get any pleasure from the things I used to enjoy.

5. Guilty Feelings

- 0 I don't feel particularly guilty.
- I feel guilty over many things I have done or should have done.
- 2 I feel quite guilty most of the time.
- 3 I feel guilty all of the time.

6. Punishment Feelings

- 0 I don't feel I am being punished.
- I feel I may be punished.
- I expect to be punished.
- 3 I feel I am being punished.

7. Self-Dislike

- 0 I feel the same about myself as ever.
- 1 I have lost confidence in myself.
- 2 I am disappointed in myself.
- 3 I dislike myself.

8. Self-Criticalness

- 0 I don't criticize or blame myself more than usual.
- I am more critical of myself than I used to be.
- 2 I criticize myself for all of my faults.
- 3 I blame myself for everything bad that happens.

9. Suicidal Thoughts or Wishes

- 0 I don't have any thoughts of killing myself.
- I have thoughts of killing myself, but I would not carry them out.
- 2 I would like to kill myself.
- 3 I would kill myself if I had the chance.

10. Crying

- 0 I don't cry anymore than I used to.
- 1 I cry more than I used to.
- 2 I cry over every little thing.
- 3 I feel like crying, but I can't.

BDI (Beck, 1996) focuses on depression

Inventory

6

 Items measure elements related to depression
(e.g., self-dislike, suicidal thoughts or wishes)

A test: Mini Mental State

,

7

Maximum	Score		
5 5	()	Orientation What is the (year) (season) (date) (day) (month)? Where are we (state) (country) (town) (hospital) (floor)?	MMS (Folstein, 1975)
		Pagistration	focuses on
3	()	Name 3 objects: 1 second to say each. Then ask the patient all 3 after you have said them. Give 1 point for each correct answer. Then repeat them until he/she learns all 3. Count trials and record.	global cognitive efficiency
5	()	Attention and Calculation Serial 7's. 1 point for each correct answer. Stop after 5 answers. Alternatively spell "world" backward. (Do both and take the best score)	Solicits actions from the subject (e.g. repeating names of objects, copying a figure)
3	()	Recall Ask for the 3 objects repeated above. Give 1 point for each correct answer.	
2 1 3	() () ()	Language Name a pencil and watch. Repeat the following "No ifs, ands, or buts" Follow a 3-stage command: "Take a paper in your hand, fold it in half, and put it on the floor."	
1 1 1	() () ()	Read and obey the following: CLOSE YOUR EYES Write a sentence. Copy the design shown.	

Instrument-based assessments

- Subject data acquisition (SDA) instruments
- Ontological reference framework
- Core ontology of (SDA) instruments (per se)
- Core ontology of scores
- Conclusion

DOLCE: an ontology of particulars

Software technologies for integration of process, data and knowledge in medical imaging

(Masolo et al., 2003)

A minimal ontology of actions

Software technologies for integration of process, data and knowledge in medical imaging

Sources:

- (Pacherie, 2000): The content of intention
- (Pacherie, 2007): The phenomenology of action ...
- (Trypuz, 2008): Formal ontology of action ...

An ontology of technical artefacts

Software technologies for integration of process, data and knowledge in medical imaging

(Kassel, 2010, Applied Ontology): "technical artefacts have a triple nature"

Physicality and artefacts

Software technologies for integration of process, data and knowledge in medical imaging

thermometer, measuring-rod)

(e.g., ontology, computer program, <u>scale</u> <u>questionnaire</u>, <u>test</u>, <u>exam subject</u>)

CUPOLOG Software technologies information.content objects

Sources:

- (Pease & Niles, 2002): Practical Semiotics...
- (Masolo et al., 2003) -> define Information objects and Descriptions
- (Fortier & Kassel, 2004) -> define Inscriptions, Expressions and Conceptualizations

- Subject data acquisition (SDA) instruments
- Ontological reference framework
- Core ontology of (SDA) instruments (per se)
- Core ontology of scores
- Conclusion

- SDA instruments are:
 - Intangible artefacts, complex propositional contents
 - including « clearly defined methods and instructions for administration or responding, a standard format for data collection, and well-documented methods for scoring, analysis, and interpretation of results » (CDISC Glossary, 2007)
 - Intentionnally produced (and therefore have authors)
 - Functional entities which enable the exploration of some class(es) of entities related to the subject's state (their domain(s))

More about instruments' structure

- Software technologies for integration of process, data and knowledge in medical imaging
- Some (composite) instruments have for parts subinstruments (exploring sub- or related domains)
 - (e.g., the MMS (Mini-Mental State) Test is composed of the MMS orientation Test, the Registration Test and Language Tests)
- Instruments have *variables* as atomic parts, which:
 - "explore" domains (like instruments)
 - Main variables explore the same domain as their instrument
 - Secondary variables explore near domains to provide additional information

Neurolog Mo

More about instruments' creation

- Two types of produced entities must be distinguished:
 - kinds of instruments
 - instances of instruments
- Kinds of instruments undergo adaptations (variants) and are revised to create standards:
 - (e.g., Wechsler Adult Intelligence Scale: WAIS-I (1955), WAIS-R (1981), WAIS-III (1997), WAIS-IV (2008))
- It is crucial to model knowledge about kinds of instruments (and not only about instances) to enable data sharing:
 - (e.g., the conventional name of the variables)

- Two kinds of *domains* must be distinguished:
 - Capacities/Functions (e.g., language, memory, motricity)
 - « Traits », i.e. pathological states (e.g., depression, anxiety, dementia)
- Depending on the kinds of *domains*, *variables* measure:
 - Performances of the subjects on the realization of an action
 - (e.g., performance on naming of two objects, performance on repeating a sentence)
 - Intensity/severity of traits
 - (e.g., intensity of depression, severity of dementia)

Ontology of SDA instruments

Ontology of variables

Software technologies for integration of process, data and knowledge in medical imaging

- Subject data acquisition (SDA) instruments
- Ontological reference framework
- Core ontology of (SDA) instruments (per se)

Core ontology of scores

Conclusion

what variables measure... in reality

Software technologies for integration of process, data and knowledge in medical imaging

Entities and their properties

- « Performance » in the realization of actions:
 - Great diversity of actions: counting backwards by 7, figure recopy, walking a 500-meter
 - Collections of successfull actions: number of items correctly recognized during a test
- « Intensity » of « traits »:
 - Great diversity of qualites: Frequency, severity, gravity, impact on the entourage, impact for the subject
 - Great diversity of traits: capacities, loss of capacities, aberrant behaviors, pathological states, dispositions, feelings, wishes, delusional ideas, hallucinations
 - Collection of states: depression, most of the day or nearly every day for the past two weaks

Our modeling strategy

- Modeling the subject, taking into account information acquired by an instrument-based assessment, is a too difficult task...
 - Ontological resources accounting for capacities, behaviours, dispositions, collections, etc. are not yet on the shelves!
- All what we need is to share scores as symbols having a conventional meaning
 - We don't need to explicitly represent this meaning
- We therefore model results of instrument-based assessments as information (propositional content) coded by numbers

Information associated to Software technologies for integration of process, data and knowledge in medical imaging Variables

Scores: information resulting

"During <u>one MADRS</u> assessment, <u>subject X</u> has no pessimistic thoughts as measured by the MADRS Pessimistic Thought variable"

- Subject data acquisition (SDA) instruments
- Ontological reference framework
- Core ontology of (SDA) instruments (per se)
- Core ontology of scores
- Conclusion

Summary and perspectives

Software technologies for integration of process, data and knowledge in medical imaging

• We designed a core ontology of instruments to assess the neuropsychological state of subjects

• This core ontology:

- Extends a set of existing foundational and core ontologies (Particular (*DOLCE*), Actions, Functions and Artefacts, Inscriptions, Expressions & Conceptualizations (*I&DA*))
- Is currently specialized to conceptualize (a dozen of) standards instruments
- A version encoded in OWL is used to query image and neuropsychological data (project NeuroLOG)
- Our short-dated objectives:
 - modeling <u>brain functions</u> which play the role of instruments' domains, as a first step towards sharing knowledge about instruments