
NeuroLOG ANR-06-TLOG-024
Software technologies for integration of process, data and knowledge in medical imaging

Deliverable L8: processings composition on a distributed system

Javier Rojas Balderrama MODALIS (I3S) javier@i3s.unice.fr
Johan Montagnat MODALIS (I3S) johan@i3s.unice.fr

Abstract

The NeuroLOG platform supports the integration of new image processing tools
and the building of processing chains describing neurology experiments. The under-
lying execution of such experiments may be distributed over the resources provided
by multiple sites participating to the federation or remote grid resources. This de-
liverable documents the processing tool integration mechanism adopted to achieve
these goals.

NeuroLOG ANR-06-TLOG-024

1 Introduction

The NeuroLOG middleware provides image analysis tools integration into their platform
in order to support image analysis pipelines design. The solution proposed is based on
several software components that have been integrated into the NeuroLOG prototype
platform currently deployed. This document gives an overview of the existing system and
it is meant as a technical documentation for users of these services.

The objectives of WP4 (design and execution of distributed application on a distributed
infrastructure) are to:

• enable the integration of image analysis tools into the platform;

• enable the remote invocation of these tools;

• publish these tools for discovery and usage by neurologists;

• provide access control to tools execution;

• enable the design of image analysis pipelines; and

• control the execution of complete pipelines over data sets.

The image analysis tools developed by the NeuroLOG neuroscience centers are command-
line applications meant for atomic run on an (or a group of) image. To address WP4 goals,
the software developed is structured in three components:

1. A toolbox for service management, namely jGASW (java Grid Application Service
Wrapper), embedding traditional command-line application into a service-oriented
framework by providing a Web Service invocation interface to the wrapped applica-
tion. Moreover, jgasw provides additional instrumentation concerns such as tools
relocation and client interfaces.

2. A tools container, currently the Apache Tomcat services container, for exposing
the wrapped tools to the NeuroLOG clients. This server includes the Sun Metro
Web services stack to run the Web services.

3. A workflow designer and manager, Moteur2, which can handle large data flows and
provide efficient enactment.

The jgasw toolbox is described in section 2 and its graphical user interface in section 3.
The jgasw remote execution capability is discussed in section 4 and its invocation interface
is documented in section 5. The simple web services catalog designed to date is then
described in section 6. The Moteur2 workflow engine is finally documented in section 7.

2 jGASW toolbox

Most image analysis tools developed in the neuroscience community are neither designed
for integration in a standard environment nor for tool relocation and remote invocation.
The jgasw toolbox aims at providing a wrapper shell for applications using a Command-
Line Interface (CLI), using the Web Service (WS) standard invocation interface, in order
to ease the integration of these tools into the NeuroLOG platform.

2

NeuroLOG ANR-06-TLOG-024

jgasw provides much more than a mere invocation interface to the service. This tool
provides a complete mechanism to package tools and their dependencies into an archive,
relocate this archive on a given server, deploy and publish it. As a submission interface,
jgasw is also involved with security (access control to the service execution) and grid
invocation (including files transfer for proper processing on a remote resource). jgasw
therefore provides a full range of functionality, making the applications autonomous, re-
locatable and grid-compliant. It also addresses grid execution performance.

The jgasw toolbox is composed by three elements: (1) a service wrapper, (2) libraries
to manage the relocation of resources, and (3) a client programmatic interface to invoke
the wrapped applications. The wrapper and the libraries are based on a data modeling
describing cli applications and the way to execute them. In contrast, the client interface
is an autonomous service consumer.

2.1 Data modeling

The description of a cli application is made using a xml schema listed in the Appendix C.
This representation allow us to declare all options and dependencies associated to a cli
application. jgasw uses Java objects to access the instances of this schema. The map-
ping between Java objects and serialized representation in xml are performed through an
automated data binding transformation.

2.1.1 Data binding

Data binding gives and object view of underlying xml data without losing access to the
original information, and delivers performance benefits using unmarshalling and efficient
methods to access xml schema build-in data types.

Several Java data binding tools including JAXB, Castor, EMF and JiBX are available.
However, they are partial implementations of the W3C Schema specification or case ori-
ented like relational mapping. On the other hand Apache xmlbeans1, an open source tool
based on the StAX specification, provides a data binding mechanism by automatically
creating a mapping between elements of a xml schema to bind, and members of a class
to be represented as objects in memory. Xmlbeans takes advantage of the richness and
features of xml giving a full schema support and the corresponding Java classes; provides
a xml fidelity keeping the full infoset after unmarshalling in a xml instance; and honors
schema constraints. The election of xmlbeans is based on these arguments, the large
adoption in the community, and support.

The xml schema is the starting point for xmlbeans development. This schema provides
a data model that enables to express the structure and constrains designed in the schema.
The xmlbeans technology is used to generate Java classes and interfaces associated to all
elements defined in the xml schema. The resulting xmlbeans classes are able to parse
any instance document that conforms to the schema. Also, and instance document can be
created by manipulating these classes.

After the xmlbeans code generation, an intermediate step consists in an code ad-
justment by means of a adapter pattern to reflect the interfaces declared as high level
representation of the resource. This step simplifies the access to declarations leaving the
complexity of the original data binding hidden for later instances declarations.

1http://xmlbeans.apache.org

3

http://xmlbeans.apache.org

NeuroLOG ANR-06-TLOG-024

2.2 Service wrapper

The process to expose an application by way of Web services begins with the generation
of personalized code that reflects the resource description: Java bean code to invoke the
business code of the service; intermediate method stubs; and configuration files to deploy
the resulting byte-code on the service container.

2.2.1 Template processor

The description of a cli application of section 2.1 abstracts a resource. Now the principle
consists to transform that description into a ws interface. In jgasw this transformation
is based in a template engine that provides Java code and the necessary files to let the
service container interpret this code.

Apache Velocity2, is an open source tool that defines a simple template language used
to create and render documents that format and present a data model. Velocity aims
at ensuring a clean separation between the representation and the business tiers using
context objects and merging them with the data using a template to produce the resulting
document. The context object is a central concept to Velocity. This context is the carrier
of data between the Java layer and the template. Since the data model is represented as
objects, Velocity takes them directly becoming accessible via the references defined in the
template and substitutes the values with the instance of the description.

The template-based procedure generates (1) the ws interface using the jax-ws spec-
ification (see 2.2.2); (2) the configuration file needed by the ws messages interpretation
engine in order to publish the service; and (3) the configuration file of the server container
to associate the Java code to the ws servlet engine. Each (set of) file(s) has its own
template and is combined with the description of the application using the data modeling
representation described in the section 2.1.1.

2.2.2 WS implementation and stubs generation

Basically Web services are created according to two paths: the top-down or “Contract
first” based on the initial declaration of the wsdl document; and the bottom-up or “Im-
plementation first” working with the code and later generating the wsdl associated to
that code. The bottom-up approach is a suitable scenario for jgasw because the service
interface is generated in a Java bean and the data model is already defined.

Under Java different specifications exist to build services. Some of them are isolate
efforts such as Apache Axis implementations, and others are based on Java Specification
Requests. The latest specification for ws applications and clients is the Java api for xml
Web services (jax-ws). This specification replaces the jax-rpc api reflecting the move
away from rpc-style. Jax-ws is the “modern” Java soap implementation of Web services
making extensive use of the annotations mechanism introduced in Java 5 and strategically
aligns itself with the current trend towards a more documented-centric messaging model.

The use of annotations simplifies the implementation and eases the service develop-
ment. Based on a Plain Old Java Objects, containing the implementation of the ws
interface, the annotations are included in the code describing details such as Service iden-
tification, soap binding, namespace and operation descriptions, among others. All these
details are instantiated during the merging step of the code generation and they are used
to be compiled into byte-code assuring better platform independence for Java applications.

2http://velocity.apache.org

4

http://velocity.apache.org

NeuroLOG ANR-06-TLOG-024

Jax-ws uses jaxb as default data binding to process the message marshal/unmar-
shalling. These operations map the Java types into wsdl types and vice-versa. The
resulting mapping called ws method stubs are part of the final service and they are used
to communicate with the client all along the invocation. We use the wsgen utility to
generate those stubs. This pragmatic choice requires an external call of the utility after
the code generation during compilation. In the future, another programmatic approach
using APT-Jelly3 could be implemented to reduce external dependencies of jgasw.

It is important to quote that some circumstantial adoptions are inevitable. While
the use of uri Java type ensures the correct manipulation of any protocol, unlike the
url Java type which is limited to a set of predefined protocols, it is not possible to map
directly jgasw parameters defined as URIs into uri Java objects. Indeed, jaxb maps a
uri to a xs:string instead of xs:anyURI, making it indistinguishable from any string.
Alternatively, jgasw internally uses urls. This use carries some consequences: the url
Java type does not support grid protocols, so an extension of the url handler is required.

In terms of solutions supporting jax-ws basically three products contest the audience:
Sun Metro, Apache CXF and Apache Axis2. The first two implements all the jax-ws
specification and they are distributed on major application servers. Axis2, on the other
hand, provides an interesting alternative but is based on its Axis services approach giving
to jax-ws a marginal dedication. Each of these products needs to be configured on the
basis of Tomcat and the deployed services have to fulfill the formatting and configuration
for deployment.

jgasw uses Sun Metro4, the jax-ws Reference Implementation, that provides the stack
engine to publish services. It is easily integrated with Tomcat and supports additional
needs as MTOM, useful for the service attachments manipulation.

2.2.3 Packaging and deployment

Following the Tomcat server schema, all services are deployed in form of a Web Application
Archive (WAR), a special jar file used to distribute a standard Web application. In the
case of jgasw this archive includes configuration files (sun-jaxws.xml and web.xml);
the description of the resource (description.jgasw); the wrapped cli application; the
dependencies; and the Java classes representing the ws interface and the stubs. This war
file is created automatically using one of the jgasw interfaces of the wrapper as is detailed
in the Section 3.

The Tomcat server is not configured to support jax-ws out of the box. Metro should be
installed with Tomcat before hosting any service. Additionally the set of jgasw libraries
has to be accessible in the class path. These libraries implements all the logic associated
to the relocation described in the Section 4.

The last action to publish a service is to deploy the war archive on the Tomcat webapps
directory. Tomcat sets up services at run-time without perturbing its normal operation
(i.e. there is no need to restart the server). This quality is known as hot deployment. Just
after the deployment, the wsdl describing the service is available through the annotations
inserted in the Java code and the service is ready for invocation. Removing the deployed
services releases safely the reference to the service from the container; and from the catalog.

3APT-Jelly is a Java engine for generating artifacts from source code by providing and interface for
Sun’s Annotation Processing Tool to a template engine. See http://apt-jelly.sourceforge.net

4https://metro.dev.java.net/

5

http://apt-jelly.sourceforge.net
https://metro.dev.java.net/

NeuroLOG ANR-06-TLOG-024

3 User interfaces

The user interfaces of jgasw allows us to create and deploy new services. The procedure
aims at being as simple as possible, filling the description form that includes eventual
dependencies of the application and the details of all arguments. This section describes
the graphical interface shown in Figure 1 and the equivalent command-line utility.

3.1 Graphic interface

Figure 1: Main jgasw GUI panel

The main window includes all relevant fields of the cli application. All these fields are
used to generate the description. Below there is a brief description of each element of this
form.

Service name is the symbolic name of the service. This name is part in the construction
of the wsdl url path.

Version is the declared version of the application. This version as the Service name, is
used to build the wsdl url.

Description is the extended description of the application. Even if is purely informative
it should describes a detailed description of the cli application including a command-
line example.

6

NeuroLOG ANR-06-TLOG-024

Organization is the name of the organization who owns the application.

Copyright is the licence category of the original application.

Reference is a reference or key name associated to the application.

Address is the contact email address of the person in charge of the wrapped service.

Category is the application’s file type. The possible values are Application or Command.

Executable is the path of the application (loaded using the Load button).

Arguments can be associated to the application in the description using the add/remove
(+/–) buttons in the Argument tab pane. Once the add button, is clicked the dialog shown
in Figure 2(a) is displayed.

(a) General options pane (b) Advanced options pane

Figure 2: Argument declaration dialog

An argument can be described using the following fields:

Label the reference’s name of the argument. This label is just a reference freely named
by the user. If the Type is declared as Input this label is used as argument name
of the Web service.

Option the command-line option associated to the argument. For instance the posix-
style defines options with simple dash character followed by a letter or double dash
followed by the option name.

Value is the exact content of the argument. The value is only taken into account when
the IO is not declared as Input because input values are provided invoking the
service. The value can contain a case sensitive string or a regular expression (a Perl
Compatible Regular Expression indeed). A second alternative is designed for output
arguments with variable number of entries in the Advanced tab pane.

IO the argument’s type, namely: Input, Output or Flag. The Flag type can be used to
provide constant values of arguments that are not inputs nor outputs. When the IO
is declared as Output the argument’s Type is always a URI because the ws output
are files all the time. This is the mechanism to present results and the output of the
execution.

7

NeuroLOG ANR-06-TLOG-024

Type the primitive type class associated to the argument. The possible values are string,
double, integer or URI.

Additionally, advanced argument options (shown in the Figure 2(b)) may be set on
the Advanced pane. These options add richness to the classical description of an argument
and is provided for special situations as implicit arguments, special file types and the
declaration of nested arrays. The advanced options includes:

SFT or Special File Type assumes as default that an argument of type URI is a simple
Regular file. The behaviour is modified using the Expand, Replace or Directory
options. Expand and Replace are used in combination with the list of extensions
LoE. When Expand is selected the argument declared with a specific Value is con-
catenated to each extension of the LoE and then add all the combinations to the
command-line argument. If the Replace option is set the argument declared with
the Value is used in the command-line but the reference a this file is resolved using
all the extensions of the LoE (see example at section 8). Finally when the option
Directory is selected the declared Value is considered as a directory file name and
all files included inside are associated to this argument.

LoE or List of Extensions is used to declare all file extensions associated to the declared
Value in combination with the SFT.

Space In some cases an argument Value is declared next to the Option without any
space between them. This type of declaration is set checking the box.

Nesting All elements needed to declare the argument as a array of a given dimension
are declared on the nesting frame. For that the begin and end delimiters (blank
space by default) and the separator character are set.

Like arguments, we can also include dependencies. Typically dependencies are external
libraries to run an application. Sometimes other binaries are included for the execution,
for example the binaries to be run in the main script. To achieve dependencies inclusion
click the add button on the Dependency tab pane. A simplified dialog to the main one is
displayed as shown in Figure 3.

All dependencies are “resources” so the description is similar to the main application
with an appropriate Category on the combo-box. Finally when the button Create Service
is clicked, the service is deployed on the container directory of Tomcat. If the configuration
is not set, using the jgasw properties listed on the Appendix B, a Save file chooser appears
to save the corresponding file on the system. It means, services can be created without a
server and then we can deploy the service manually into a server.

There is also an alternative method to load a service description from the command
line. The option ‘-l’ with the name of the file when the jgasw application is lauched will
load the description on the graphical interface. If some paths of the description are invalid
these will be highlighted on red.

3.2 Command-line interface

The command-line utility is an alternative interface to create services using jgasw without
using the graphical interface. This alternative is appropriate for testing purposes or users
that only want to modify their service slightly without filling again all the description. The
use of this interface however, supposes accurate knowledge of the jgasw xml schema.

8

NeuroLOG ANR-06-TLOG-024

Figure 3: Dependency declaration panel

The utility is an option to wrap an application from scratch combining the use of the
command-line tools provided by xmlbeans5. The utility xsd2inst is useful to create a
empty description instance based on the schema. Then the validate tool helps to verify
the correctness of the description. The list of steps to create service from cli is the
following:

1. Run the command: xsd2inst resource.xsd -name description.jgasw to create
a empty description.

2. Complete the generated description file.

3. Validate the description running: validate resource.xsd description.jgasw

4. Copy the description and all necessary resources into a directory.

5. Execute: java -jar jgasw-ui-<version>.jar -c <directory name>

This procedure creates a war file using the information found at the description,
encapsulating all resources and generating the code to wrap the application as a Web
service. This service can be deployed on the Tomcat server as usual.

4 Tools relocation

The core functionality of jgasw beyond the description of cli application is the instrumen-
tation of the logic related with the interpretation of arguments, dependencies configuration
and the execution. This operative process is organized in three groups: data management,
local execution and execution on the grid.

5http://xmlbeans.apache.org/docs/2.0.0/guide/tools.html

9

http://xmlbeans.apache.org/docs/2.0.0/guide/tools.html

NeuroLOG ANR-06-TLOG-024

4.1 Data management

One fundamental feature of jgasw in case of file transfers is the delegation of this task
to external tools. It means, the instantiated service does not transfer the results declared
as files, and only provides references to them. The design of this feature responds to the
necessity of avoiding the potential bottleneck of large amount of data transfers that cer-
tainly it is not part of the service execution. By contrast, if the service receives references
to files as arguments, these are fetched to the effective point of execution managing the
different protocols supported by jgasw, namely: file, http, https, ftp, lfn or gsiftp.

After the execution of an application two scenarios are figured out regarding data. In
the fist scenario, if the resulting files are potentially inaccessible to the remote client jgasw
puts available into a public space all the resulting files. Usually this context happens in a
local execution where the outputs are defined using the file protocol so, a translation of
the reference is possible in favor of other protocol such as http. In the second scenario,
jgasw registers all resulting files product of a grid execution on a Storage Element, then
references to those files are reported to the client. Naturally, in both cases files can be
delivered to the client using an additional data transfer operation.

4.2 Local execution

The instrumentation of the local execution interprets the description of the application
building the command-line to execute. On the server, a isolated sandbox is created and the
execution is then performed retrieving all necessary data to the sandbox and configuring
the dependencies properly. The local execution is the simplest jgasw run-time instru-
mentation. The application runs in the same place where the service is hosted, for this
reason multiple instances of heavy-demanding applications are not suitable and a remote
relocation on a production grid is contemplated.

4.3 Grid execution

The grid execution allows several remote executions of an application transparently but
requires remote relocation of resources. This execution implies use of several components of
the grid infrastructure such as Workload Management System (WMS), Storage Elements,
the Logging and Bookkeeping service, etc. The correct execution on the grid involves
strategies from submission to monitoring procedure.

A sequence diagram of all steps during the grid execution is presented in the Figure 4.
The diagram shows a the user invocation of the jgasw operation corresponding to the grid
execution (1). Next the application is submitted to using a wms (2) and the real execution
is delegated to a computer element (3). The Web service acting as submitter obtains a job
identifier to trace the execution progress (4). Later, the grid execution begins getting the
necessary data from the source (5). Immediately the application runs and the Web service
checks the status periodically (loop). After a normal execution the results are saved on a
Storage Element (12) and finally the references to those results are returned to the client
(15).

4.3.1 Submission channels

We contemplate two submission channels for the grid execution. Job submissions through
the programmatic approach using the gLite interface to the wms (wmproxy api) and

10

NeuroLOG ANR-06-TLOG-024

Figure 4: jgasw grid execution

alternatively the job submissions by means of a grid ui. The programmatic channel at fist
sight suitable for jgasw since everything is managed from the JVM, presents scalability
weaknesses because the service container resources quickly reaches their limits. Likely, this
is an issue to be fixed but is out of the jgasw scope. In the same way, the submission by
means of a grid ui reveals other challenges. The job description file is transferred alongside
the application and all the other dependencies to the grid ui and then copied to the grid.
This transfer requires the management of a new security layer to use the ssh pathways
that assures the connection between the grid ui and the submission manager. Moreover,
this last submission channel is not efficient because data is transferred twice: from users
to the grid ui and from grid ui to the grid.

4.3.2 Job submission policies

Job submission policies improve the rate of successful executions. We refers basically to
three policies [3]. First, the single resubmission using a timeout before submitting again
the job and cancel the previous submission. Second, the multiple submission using a
collection of the same job and cancelling all but the first job that starts the execution.
Third, the delayed resubmission. This last policy submit periodically a copy of the job
without cancelling and it iterates the process until at least one job starts. We are interested
in the implementation of these policies because latency has an important impact in normal

11

NeuroLOG ANR-06-TLOG-024

execution on grids. This issue may be overcome using job submission policies replacing the
default job submission mechanism used by the wms. As a result, we may reduce the final
execution time that is the result of the addition of effective execution time of the job and
the latency associated to the submission. Alternatively meta-schedulers like GridWay6

enable users efficient and interoperable executions but add a layer to the technology stack.

4.3.3 Fault tolerance

Fault tolerance is other property to reach in favor of quality of executions. Usually, ex-
ecutions on the grid face major inconvenient like system incompatibilities and resource
unavailability. System incompatibility appears when the application requires special char-
acteristics to run, for instance memory size or installed applications. In some cases, the
wms does not match compatible computers or the filtered results are not sufficient to run
the application either. The resource unavailability is present when the grid is overloaded or
the server responses are slow so the submission and later execution cannot start. Quality
of Services using monitoring and site selection help to improve results. White and black
wms lists may be used to probe compatibility and availability before real submissions
selecting reliable and fast computers.

4.4 Automatic execution

The final goal of jgasw is to provide an automatic execution type. Users without technical
skills could find difficult the selection of execution type because they do not have a clear
idea about the implications of relocation. Moreover users do not know the load status
of the server nor the health of the grid. These arguments draw the necessity to provide
an operation to choose automatically the type of execution in behalf of the user. The
selection between local or grid execution is based on the application description, specific
requirements and resource availability. The execution time and the requirement needs are
the most important factors however, overhead or remote responses can also determine the
type. The explicit operations still remain pertinents though.

4.5 Results manipulation

A service has arguments described with different data types and structures. In the same
way the results of an execution should match the description of provided outputs. jgasw
takes the original results of an execution and forwards them preserving that structure and
data typing. The notions about such types and structures are explained in detail in the
GWENDIA language proposal [6]. Briefly, the input and output manipulation of data is
based on the array programming principles. jgasw uses primitive types to map results
with data types. Scalars and arrays represent all application parameters and results.
Scalars are simple elements representing a plain primitive type. In contrast, (nested)
arrays are groups of elements of same type structured according to the dimension of the
array. In the same way, the workflow enactor processes data according to the GWENDIA
specification using the jgasw programmatic client described in the section 5.

Most of the time, when the results are not files they are presented in the standard
output as sequences of strings. After execution is imperative to interpret these outputs
using the description of arguments. This task involves parse, cast and map the result in

6http://gridway.org

12

http://gridway.org

NeuroLOG ANR-06-TLOG-024

the right structure and finally provide this structure as service result. jgasw reproduces
as much as possible the structure organization resulting from an execution. Nevertheless
this is not trivial and some agreement of structure is defined using delimiters of arrays and
element separators. If an application provides a different result format the output should
be adapted to a jgasw-compatible interpretation.

4.6 Extensions

Implementation of other mechanisms of submission on grids, using for example the DIET7

toolbox, are natural extensions of the execution process for future milestones. The design
of the core module of jgasw abstracts the notion of an executor enabling the possibility
to add new instances. These instances do not affect the rest of the project organization
and improve at the same time the re-usability of other jgasw components. Nevertheless,
where the relocation of resources is not exclusively yielded to jgasw and depends on other
mechanisms of deployment the effort to implement an extension is not really profitable.

Other kind of extensions are possible inside jgasw. The integration of external con-
cerns (non-functional requirements like access control or logging) have been implemented
during the integration of jgasw with the NeuroLOG middleware. In fact, changes do not
affect the data model nor the core application and it is just reflected during the generation
of the Web Service interface. Only the template interface, have to be adapted injecting
the modules of the middleware that implement those requirements. Then the byte-code is
compiled by setting a comprehensive class path to those modules. In NeuroLOG, to carry
such libraries to the client side do not bring any benefit, for that reason the generation
of the war file includes only Java source code. The code is compiled on the server and
immediately deployed. Specifically, the NeuroLOG security framework (cf. [1]) has been
reused to extend jgasw with strong and distributed security policies to prevent unau-
thorized invocations. Support another concerns such as semantic knowledge inclusion or
monitoring are good sources of additional potential addendums.

5 Invocation client interface

A generic client api to invoke services is the third element of the jgasw toolbox after the
client used to wrap the cli applications and the core libraries installed on the server to
enable the instrumentation. The methods of the api parses the service description, inter-
prets the contents and creates dynamically the soap messages to submit the information
to the server. Besides, it is possible to use the same api to invoke external Web services
interpreting the operations and arguments declared in the wsdl as long as such services
met the requirements of data management used by the GWENDIA proposal. This ca-
pability of generalization let’s the workflow manager use the api to build pipelines with
jgasw services combined with other pre-existent services provided by third-parties.

5.1 WSDL and schema parsers

The interpretation of different formats and styles provides all the relevant information
from a ws description. A wsdl binding describes how services are bound to a messaging
protocol. The wsdl binding can be either a rpc-style binding or a document style binding.
It can also have an encode use or a literal one. This gives several style/use models; and

7http://graal.ens-lyon.fr/~diet/

13

http://graal.ens-lyon.fr/~diet/

NeuroLOG ANR-06-TLOG-024

an extra pattern should be added to this collection when the binding is wrapped. Other
characteristic of services description associated to the models is the inclusion of the schema
describing the messages and types of service. This also varies importing the contents as
an external declaration or including the schema as a part of the description. All these
details are considered trying to propose a simple interface.

Two parsers are implemented in order to obtain the list of services, ports and opera-
tions, the description of messages and sequences. A wsdl parser to handle the high level
details of the service description, and a schema parser to manage the intrinsic details of
primitive types as namespaces or dimensions of variables. From the final developers point
of view only the fist parser is useful to obtain the sequence element of the operation to
call. The schema parser is used by the wsdl parser internally. In the same way, the
content details of the expected results are processed using the wsdl. In other words, a
client can obtain all the necessary information to invoke and process an operation based
on the description.

5.2 Service invocation

Using Web services the interoperability is granted between clients an server thanks to the
messaging protocol independence. Consumers dispatch a well-defined message and wait
for the result. This action is possible creating soap messages with the references retrieved
from the description associated to their corresponding values and send them to the server.

The Java specification provides the dynamic and static methods to consume Web ser-
vices. The conventional static method creates stubs and the exclusive use of objects takes
place using the wsdl file to unmarshal the arguments. The second method involves a
dynamic dispatch client that is more generic and offers more flexibility. The dynamic
method is a pure xml messaging oriented client and requires advanced use of soap mes-
sage construction and interpretation, especially if different types of response messages are
considered.

The jgasw api client implements the dynamic method because a generic procedure
for invocation is mandatory. Each service is described using a specific and different wsdl
therefore a direct manipulation of messages is done during execution. Similarly the process
mechanism of the server response is performed, despite the different message formats
since each server provides a message that is not necessary defined in the same manner.
Nevertheless to pay special attention to that concern has limits because in practice is not
possible to test all types of server messages. The jgasw approach works based mainly
on the message responses of the jax-ws reference implementation provided by Sun Metro
but gSOAP and Axis2 are supported partially.

6 Image processing tools catalog

Command-line applications wrapped through jgasw are deployed on the Tomcat server
of each site in the NeuroLOG federation. This deployment scenario ensures reliable appli-
cation services management (Tomcat is a thoroughly tested application container used in
many production environments) and coherency with the rest of the NeuroLOG platform
(the middleware services being hosted in the same container and sharing functionality
such as access control and file transfer facilities).

Tomcat is mostly an application container, managing the life cycle of the services
and providing a single entry point for clients. The Tomcat server deployed with the

14

NeuroLOG ANR-06-TLOG-024

NeuroLOG middleware is configured to use the https protocol for all communications
with the application services: only clients with a valid NeuroLOG federation certificate are
able to pass the ssl handshaking operation and communicate with the service. However,
Tomcat does not provide finer access control (it does accept all valid certificates, not
making any difference between different platform users), nor cataloging capabilities (it does
not provide service discovery nor listing). The fine-grain access control is handled by each
application service as described in section 4.6. The cataloging capability is provided by the
NeuroLOG middleware. A local Tomcat server introspection method is provided: it parses
the Tomcat application repositories and deployment information stored by Tomcat at run-
time to build a list of applications available. The cataloging method is exposed as one of
the middleware web service operations. It returns to clients the list of available services
and their corresponding wsdl document, accessible from the Tomcat server through the
https protocol. Clients can therefore browse the list of services and discover their interface
through each service wsdl description. The jgasw client handles the wsdl files parsing
for easy integration into the NeuroLOG software client.

The processing tools catalog provides only a limited functionality so far. It is limited
to site-wise cataloging and it does not provide any high level interface. In the longer run,
a catalog federation mechanism (possibly using relational information on services stored
in the NeuroLOG site databases and federated through the middleware Data Federator
services) will be developed to enable simple browsing of all tools available through the
federated platform. In addition, tools need to be identified through more significant in-
formation than a simple short name. In a longer term, the image processing tools will be
annotated with semantics information (describing service function, input and output data
classes). This information will be exploited to provide a higher level tools query interface.
Standard cataloging techniques (e.g. UDDI) will be considered if they provide sufficient
support for handling and querying semantic information related to services.

7 Image analysis pipelines design

Image analysis pipelines are designed by pipelining analysis tools in order to assemble a
complete data analysis chain. The Moteur workflow designer and execution manager [2],
now in version 2, is used for that purpose. Moteur2 provides a user friendly interface
for graphical design of application workflows, a very expressive framework to design data
intensive applications and a client/server framework to handle multiple workflows execu-
tions.

The Moteur2 graphical editor is detailed in the NeuroLOG User Guide [4]. The
designer is interfaced to the NeuroLOG middleware through a simple web service browser
that enables listing of services. Users can drag and drop ws operations listed on the
catalog into the workflow canvas. Through this simple mechanism, analysis pipelines are
built easily embedding the image analysis tool and composing the outputs and inputs.

An application workflow is defined as a graph of application tools interconnected by
data dependency links. The Moteur2 workflow enactor controls the flow of data items
along the graph links and invokes each application tool as soon as any data is available
for all inputs of this service. This data-flow oriented approach ensures high performance
(application tools are enacted concurrently when no dependency exist between them),
and expression of application parallelism in a transparent way from the user point of view
(no explicit parallelism construct is needed: parallelism is implicit in the workflow graph
topology and through the use of independent data sets). Moteur2 provides rich data

15

NeuroLOG ANR-06-TLOG-024

flow manipulation operators, known as iteration strategies [5] to enable the description of
complex image analysis pipelines.

The Moteur2 engine only interfaces with the application tools through jgasw client
api that facilitates the web service interface parsing and invocation. Through the jgasw
wrapper, Moteur2 is shielded both from details of the command-line tools invocation and
from the grid invocation interface (including data transfers and grid security credentials
management). Its role is focused on analysing the data flow and enforcing the coherent
execution of the application in a distributed environment.

In the current version of the middleware, the choice between a local or a grid execution
of each service is explicitly defined through the invocation of one of the methods of the
jgasw wrapper. Since the Moteur2 workflow services are described each by a specific
web service endpoint and the operation to invoke, this information is hard-coded in the
workflow description.

Although integrated into the NeuroLOG middleware as a binary dependency, the Mo-
teur2 workflow engine is implemented independently from the NeuroLOG software stack
and it can be downloaded from the Trac server at https://nyx.unice.fr/projects/
Moteur2.

8 Concrete example

Some advanced characteristics of jgasw cannot be observed at a glance. The manipulation
of special file formats, hidden arguments or dependencies, and the interpretation of the
resulting outputs requires an example to look in detail the necessity of the proposed
description of resources and easy invocation.

8.1 Context

BrainVISA8 is a software that allows users to trigger sequences of treatments in series
of images. These treatments are performed by calls to command-lines. These tools, are
the building blocks on which is built an assembly line. One of these applications for
calculation of images is AimsLinearComb9. It performs a sum of two brain activation
maps. For instance, AimsLinearComb performs a linear combination using the formula
I1+2 = aI1/b + cI2/d + e obtaining a fusion of two binary functional-analysis activation in
form of a new volume. An example of this command-line is:

$AimsLinearComb -i lwlebge.img -a 200.0 -b 1.0 -j lwdupje.img \
-c 20.0 -d 1.0 -e 0.0 -o lwtest.img

In practice this tool is more complex due to some suppositions the user should know:

• The input and output use Analyze images. This kind of image consists in two files
with img and hdr extensions. In the command-line however, only the img file name
appears explicitly representing the image.

• The tool execution produces a text file with the extension minf. This file is not ex-
pressed in the command-line but have to be included in the results with the Analyze
image.

8http://brainvisa.info
9http://brainvisa.info/doc/aimsdata-3.1/aims_training/en/html/ch04.html

16

https://nyx.unice.fr/projects/Moteur2
https://nyx.unice.fr/projects/Moteur2
http://brainvisa.info
http://brainvisa.info/doc/aimsdata-3.1/aims_training/en/html/ch04.html

NeuroLOG ANR-06-TLOG-024

• AimsLinearComb needs several libraries for standalone execution: libaimsalgo.-
so.3.0, libaimsalgopub.so.3.0, libaimsdata.so.3.0, libcartobase.so.3.0,
libcatodata.so.3.0, libgraph.so.3.0, libsigc-2.0.so.0 and libstdc++.so.5.
The user should configure the environment to include them in the list of the system.
Typically this is possible in unix-like systems adding to the LD LIBRARY PATH the
directory path where those dependencies are located.

Additionally the user could be aware of the standard output or error messages, so all
these concerns have to be considered when the tool is wrapped as service.

8.2 Wrapping and publishing

Using the jgasw interface, the creation and execution of this kind of cli application as
service is possible without adding intermediate scripts to adapt arguments manipulation
or file formats interpretations. Although special attention to the description declaration
is expected. The procedure is summarized as follows:

• Respect the order of the arguments, jgasw replace them in the same order. And
take into account the case of letters for the options, extensions, and values because
of case sensitiveness.

• Declare arguments ‘a’, ‘b’, ‘c’, ‘d’ and ‘e’ as Input of type double.

• Declare arguments ‘i’ and ‘j’ as Inputs of type URI setting the STF value on the
Advanced pane to Replace; and include the hdr extension to the LoE text field.

• Declare the argument ‘o’ as Output setting the STF value to Replace and include
the hdr extension to the LoE text field as well.

• Declare an implicit argument (from Advanced pane) as Output and set the Value as
regular expression checking the box. Then include the expression “.*minf” on the
value field to get the generated text file in the list of results.

• Add one by one all library dependencies on the Dependencies tab setting the category
of each one to Library.

Thereafter the service is generated and hot-deployed on the Tomcat container. The
service includes the AimsLinearComb binary, libraries, the description of the application,
the server-side configuration files, and the compiled code representing the ws interface and
the stubs. Finally, this service is ready for execution by client invocation. The complete
descriptor generated of this example is presented in the appendix D.

8.3 Execution

The service wsdl is interpreted with the description parser operations. The arguments
below are identified as inputs:

• i1;{http://www.w3.org/2001/XMLSchema}anyURI;0

• num1;{http://www.w3.org/2001/XMLSchema}double;0

• den1;{http://www.w3.org/2001/XMLSchema}double;0

17

NeuroLOG ANR-06-TLOG-024

• i2;{http://www.w3.org/2001/XMLSchema}anyURI;0

• num2;{http://www.w3.org/2001/XMLSchema}double;0

• den2;{http://www.w3.org/2001/XMLSchema}double;0

• cst;{http://www.w3.org/2001/XMLSchema}double;0

Each item describes a semicolon separated list with the label of the argument; the data
type with the respective namespace; and the dimension of the input.It means the request
message should provide a sequence carrying out all the operation arguments.

The expected values of AimsLinearComb are two elements: the text minf file and
the Analyze image. By default jgasw add the contents of standard output and standard
errors as files to the results. In short, after successful invocation a list of five file references
are present by the service consumer.

9 Conclusions

The jgasw provides a rich description of cli applications and execution procedure gen-
erating a Web service that encapsulates all the associated resources to be instrumented
using different interfaces. This approach enables compositions of pipelines using Moteur2
with strong type mapping and complex structures. This solution is a step forward the
conciliation of cli applications with modern service oriented architectures providing a
clean and simple set of tools to assist scientists that are not computer specialists to build,
run, combine, and share their work.

References

[1] Alban Gaignard, Johan Montagnat, and David Godard. Security policies set-up. Neu-
roLOG Deliverable 10, I3S Laboratory, Sophia Antipolis, 2009.

[2] Tristan Glatard, Johan Montagnat, Diane Lingrand, and Xavier Pennec. Flexible
and efficient workflow deployement of data-intensive applications on grids with MO-
TEUR. International Journal of High Performance Computing Applications (IJH-
PCA), 22(3):347–360, August 2008.

[3] Diane Lingrand, Johan Montagnat, and Tristan Glatard. Modeling user submission
strategies on production grids. In International Symposium on High Performance
Distributed Computing(HPDC’09), June 2009.

[4] Franck Michel, Alban Gaignard, Johan Montagnat, David Godard, and Javier Rojas
Balderrama. NeuroLOG client user guide. Technical report, I3S Laboratory, Sophia
Antipolis, 2009.

[5] Johan Montagnat, Tristan Glatard, and Diane Lingrand. Data composition patterns in
service-based workflows. In Workshop on Workflows in Support of Large-Scale Science
(WORKS’06), Paris, France, June 2006.

[6] Johan Montagnat, Benjamin Isnard, Tristan Glatard, Mireille Blay Fornarino, and
Ketan Maheshwari. A data-driven workflow language for grids based on array pro-
gramming principles. In Workshop on Workflows in Support of Large-Scale Science
(WORKS’09), Portland, USA, November 2009.

18

NeuroLOG ANR-06-TLOG-024

A jGASW Java project

The jgasw Java project is organized in six modules: data binding, core, common, grid,
ui, util and client api. The data binding module implements the process of mapping from
the xml schema to Java objects. The core module implements the server-side business
logic including the description interpretation and the relocation of resources. The common
module declares the global properties. The grid module implements the remote relocation
and grid communication. The ui module implements the interface with the client using
graphical components. The util module implements the additional functionality of all
operations used by the other modules. Finally, the client api module is used to invoke
dynamically all deployed services. The code is available under CeCILL-B licence at https:
//nyx.unice.fr/svn/jgasw/

B Configuration properties

All jgasw configuration is set using ‘properties’. The default values are defined in the
commons module. Those values may be overriden using a jgasw.properties file located
at .jasw directory on the user’s home using java properties format <property name>
= <property value>. System environment variables are used on runtime if these are
not overridden using a jgasw property defined on the properties file, in that case the
environment variable is ignored.

Property name Description

General jgasw properties

jgasw.core.file.description xml descriptor’s name of the cli application.
Default value: description.jgasw

jgasw.service.file.metro Name of the Metro configuration file.
Default value: sun-jaxws.xml

jgasw.service.file.tomcat Name of the Tomcat configuration file.
Default value: web.xml

jgasw.template.file.metro Velocity template used to create the Metro configuration file.
Default value: metro.vm

jgasw.template.file.tomcat Velocity template used to create the Tomcat configuration
file.
Default value: tomcat.vm

jgasw.template.file.service Velocity template used to create the ws interface of jgasw.
Default value: template.vm

continued on next page

19

https://nyx.unice.fr/svn/jgasw/
https://nyx.unice.fr/svn/jgasw/

NeuroLOG ANR-06-TLOG-024

Property name Description

FILE SYSTEM PATH Temporal directory used to host the jgasw artifacts.
Default value: <java.io.tmpdir>/jgasw

TMP WORKING PATH Server’s temporal directory used to relocate a cli applica-
tion and the associated inputs. It is used in local executions.
Default value: <java.io.tmpdir>/ jgasw

jgasw.ws.file.stdout Name of the standard output file.
Default value: std.out

jgasw.ws.file.stderr Name of the standard error file.
Default value: std.err

jgasw.service.flag.deploy Option to enable auto-deploy on $CATALINA HOME/webapps.
Default value: false

jgasw.service.flag.compile Option to enable the compilation after the code generation.
Default value: true

jgasw.ws.uri.flag.translation Option to translate file uris in Web urls.
Default value: true

Path translation properties

jgasw.ws.uri.string.protocol Protocol name.
Default value: http

jgasw.ws.uri.string.host Server name.
Default value: localhost

jgasw.ws.uri.path.public url path.
Default value: ∼/<user name>

jgasw.ws.uri.number.port Server’ port number.
Default value: 80

jgasw.ws.file.data Host directory of resulting files.
Default value: $HOME/public html

Grid properties

jgasw.grid.lb.number.interval Logging and Bookkeeping status interval in seconds.
Default value: 30

continued on next page

20

NeuroLOG ANR-06-TLOG-024

Property name Description

jgasw.grid.config.path.globus User’s Globus home directory.
Default value: $HOME/.globus

jgasw.grid.config.path.glite User’s gLite home directory.
Default value: $HOME/.glite

X509 USER CERT User’s certificate from which the proxy credential is created.
Default value: $GLOBUS HOME/usercert.pem

X509 USER KEY User’s private key from which the proxy credential is created.
Default value: $GLOBUS HOME/userkey.pem

PKCS12 USER CERT File name representing the usercert .p12 file.
Default value: $GLOBUS HOME/usercert.pk12

PKCS12 USER KEY PASSWORD The password for unlocking the PKCS12 user certificate.
Default value: Not set.

VOMSES LOCATION Directory where voms specification files are located.
Default value: $GLITE HOME/vomses

VOMSDIR Directory where voms certificates are located.
Default value: Not set.

CADIR Directory where CA certificates are located.
Default value: Not set.

X509 USER PROXY User’s proxy certificate file path.
Default value: <java.io.tmpdir>/x509up u <user name>

C Schema

1 <?xml version ="1.0" encoding ="utf -8"?>

<xs:schema xmlns:xs="http :// www.w3.org /2001/ XMLSchema"

targetNamespace ="http :// modalis.cnrs.fr/jgasw/xml/resource"

4 xmlns:tns="http :// modalis.cnrs.fr/jgasw/xml/resource"

elementFormDefault =" qualified" attributeFormDefault =" unqualified">

<xs:element name=" bundle" type="tns:bundleType "/>

7 <xs:attribute name=" category">

<xs:simpleType >

<xs:restriction base="xs:string">

10 <xs:enumeration value =" application" />

<xs:enumeration value =" library" />

<xs:enumeration value =" command" />

13 </xs:restriction >

</xs:simpleType >

</xs:attribute >

16 <xs:attribute name=" osname">

<xs:simpleType >

<xs:restriction base="xs:string">

19 <xs:enumeration value ="aix" />

<xs:enumeration value ="win32" />

21

NeuroLOG ANR-06-TLOG-024

<xs:enumeration value ="bsd" />

22 <xs:enumeration value ="os2" />

<xs:enumeration value =" solaris" />

<xs:enumeration value ="hpux" />

25 <xs:enumeration value ="irix" />

<xs:enumeration value ="linux" />

</xs:restriction >

28 </xs:simpleType >

</xs:attribute >

<xs:attribute name="name">

31 <xs:simpleType >

<xs:restriction base="xs:string" />

</xs:simpleType >

34 </xs:attribute >

<xs:attribute name="io">

<xs:simpleType >

37 <xs:restriction base="xs:string">

<xs:enumeration value ="in" />

<xs:enumeration value ="out" />

40 <xs:enumeration value ="nio" />

</xs:restriction >

</xs:simpleType >

43 </xs:attribute >

<xs:attribute name="type">

<xs:simpleType >

46 <xs:restriction base="xs:string">

<xs:enumeration value ="int"/>

<xs:enumeration value =" string"/>

49 <xs:enumeration value =" boolean"/>

<xs:enumeration value =" double"/>

<xs:enumeration value ="URI"/>

52 </xs:restriction >

</xs:simpleType >

</xs:attribute >

55 <xs:attribute name="brand">

<xs:simpleType >

<xs:restriction base="xs:string">

58 <xs:enumeration value =" regular" />

<xs:enumeration value =" directory" />

<xs:enumeration value =" expand" />

61 <xs:enumeration value =" replace" />

</xs:restriction >

</xs:simpleType >

64 </xs:attribute >

<xs:attribute name="regex">

<xs:simpleType >

67 <xs:restriction base="xs:boolean"/>

</xs:simpleType >

</xs:attribute >

70
<xs:attribute name=" implicit">

<xs:simpleType >

73 <xs:restriction base="xs:boolean"/>

</xs:simpleType >

</xs:attribute >

76 <xs:attribute name=" separator" >

<xs:simpleType >

<xs:restriction base="xs:string">

79 <xs:length value ="1"/>

22

NeuroLOG ANR-06-TLOG-024

</xs:restriction >

</xs:simpleType >

82 </xs:attribute >

<xs:attribute name=" initDelimiter">

<xs:simpleType >

85 <xs:restriction base="xs:string">

<xs:length value ="1"/>

</xs:restriction >

88 </xs:simpleType >

</xs:attribute >

<xs:attribute name=" endDelimiter">

91 <xs:simpleType >

<xs:restriction base="xs:string">

<xs:length value ="1"/>

94 </xs:restriction >

</xs:simpleType >

</xs:attribute >

97 <xs:complexType name=" bundleType">

<xs:complexContent >

<xs:extension base="tns:resourceType">

100 <xs:sequence >

<xs:element name=" arguments"

type="tns:argumentsType"

103 minOccurs ="0"/ >

<xs:element name=" dependencies"

type="tns:dependenciesType"

106 minOccurs ="0"/ >

<xs:element name=" configuration"

type="tns:configurationType"

109 minOccurs ="0"/ >

</xs:sequence >

</xs:extension >

112 </xs:complexContent >

</xs:complexType >

<xs:complexType name=" resourceType">

115 <xs:sequence >

<xs:element name=" target" type="xs:string"/>

<xs:element name=" version" type="xs:string"/>

118 <xs:element name=" symbolicName" type="xs:string"/>

<xs:element name=" description" type="xs:string"/>

<xs:element name=" localization" type="xs:anyURI"/>

121 <xs:element name=" organization" type="xs:string" minOccurs ="0"/>

<xs:element name=" copyright" type="xs:string" minOccurs ="0"/>

<xs:element name=" reference" type="xs:string" minOccurs ="0"/>

124 <xs:element name=" contactAddress" type="xs:string" minOccurs ="0"/>

</xs:sequence >

<xs:attribute ref="tns:category" use=" required" />

127 <xs:attribute ref="tns:osname" default ="linux" />

</xs:complexType >

<xs:complexType name=" nestingType">

130 <xs:sequence >

<xs:element name=" dimension" type="xs:int"/>

</xs:sequence >

133 <xs:attribute ref="tns:separator" default =","/>

<xs:attribute ref="tns:initDelimiter" default =" "/>

<xs:attribute ref="tns:endDelimiter" default =" "/>

136 </xs:complexType >

<xs:complexType name=" configurationType">

<xs:sequence >

23

NeuroLOG ANR-06-TLOG-024

139 <xs:element name=" variable"

type="tns:variableType" maxOccurs =" unbounded "/>

</xs:sequence >

142 </xs:complexType >

<xs:complexType name=" variableType">

<xs:sequence >

145 <xs:element name=" content" type="xs:string" minOccurs ="0"/>

</xs:sequence >

<xs:attribute ref="tns:name" use=" required"/>

148 </xs:complexType >

<xs:complexType name=" valueType">

<xs:sequence >

151 <xs:element name="value" type="xs:string" minOccurs ="0"/>

<xs:element name=" extensions" type="xs:string" minOccurs ="0"/>

</xs:sequence >

154 <xs:attribute ref="tns:regex" default ="false"/>

<xs:attribute ref="tns:brand" default =" regular"/>

</xs:complexType >

157 <xs:complexType name=" argumentsType">

<xs:sequence >

<xs:element name=" argument"

160 type="tns:argumentType"

minOccurs ="1"

maxOccurs =" unbounded" />

163 </xs:sequence >

</xs:complexType >

<xs:complexType name=" argumentType">

166 <xs:sequence >

<xs:element name="label" type="xs:string" />

<xs:element name=" option" type="xs:string" minOccurs ="0" />

169 <xs:element name="value" type="tns:valueType "/>

<xs:element name="space" type="xs:boolean" minOccurs ="0" />

<xs:element name=" nesting" type="tns:nestingType "/>

172 </xs:sequence >

<xs:attribute ref="tns:io" use=" required"/>

<xs:attribute ref="tns:type" default ="URI"/>

175 <xs:attribute ref="tns:implicit" default ="false"/>

</xs:complexType >

<xs:complexType name=" dependenciesType">

178 <xs:sequence >

<xs:element name=" dependency"

type="tns:resourceType"

181 minOccurs ="1"

maxOccurs =" unbounded" />

</xs:sequence >

184 </xs:complexType >

</xs:schema >

D Descriptor example

1 <?xml version ="1.0" encoding ="UTF -8"?>

<res:bundle res:category =" application"

res:osname =" linux"

4 xmlns:res="http :// modalis.cnrs.fr/jgasw/xml/resource">

<res:target >AimsLinearComb </res:target >

<res:version >1.0.0 </ res:version >

7 <res:symbolicName >AimsLinearComb </res:symbolicName >

24

NeuroLOG ANR-06-TLOG-024

<res:description/>

<res:localization >/opt/jgasw/alc </res:localization >

10 <res:organization/>

<res:copyright >CeCILL -B</res:copyright >

<res:reference/>

13 <res:contactAddress/>

<res:arguments >

<res:argument res:io="in" res:type="URI" res:implicit ="false">

16 <res:label >i1 </res:label >

<res:option >-i</res:option >

<res:value res:regex ="false" res:brand =" replace">

19 <res:value/>

<res:extensions >hdr </res:extensions >

</res:value >

22 <res:space >true </res:space >

<res:nesting res:separator =","

res:initDelimiter =""

25 res:endDelimiter ="">

<res:dimension >0</res:dimension >

</res:nesting >

28 </res:argument >

<res:argument res:io="in" res:type=" double" res:implicit ="false">

<res:label >num1 </res:label >

31 <res:option >-a</res:option >

<res:value res:regex ="false" res:brand =" regular">

<res:value/>

34 <res:extensions/>

</res:value >

<res:space >true </res:space >

37 <res:nesting res:separator =","

res:initDelimiter =""

res:endDelimiter ="">

40 <res:dimension >0</res:dimension >

</res:nesting >

</res:argument >

43 <res:argument res:io="in" res:type=" double" res:implicit ="false">

<res:label >den1 </res:label >

<res:option >-b</res:option >

46 <res:value res:regex ="false" res:brand =" regular">

<res:value/>

<res:extensions/>

49 </res:value >

<res:space >true </res:space >

<res:nesting res:separator =","

52 res:initDelimiter =""

res:endDelimiter ="">

<res:dimension >0</res:dimension >

55 </res:nesting >

</res:argument >

<res:argument res:io="in" res:type="URI" res:implicit ="false">

58 <res:label >i2 </res:label >

<res:option >-j</res:option >

<res:value res:regex ="false" res:brand =" replace">

61 <res:value/>

<res:extensions >hdr </res:extensions >

</res:value >

64 <res:space >true </res:space >

<res:nesting res:separator =","

res:initDelimiter =""

25

NeuroLOG ANR-06-TLOG-024

67 res:endDelimiter ="">

<res:dimension >0</res:dimension >

</res:nesting >

70 </res:argument >

<res:argument res:io="in" res:type=" double" res:implicit ="false">

<res:label >num2 </res:label >

73 <res:option >-c</res:option >

<res:value res:regex ="false" res:brand =" regular">

<res:value/>

76 <res:extensions/>

</res:value >

<res:space >true </res:space >

79 <res:nesting res:separator =","

res:initDelimiter =""

res:endDelimiter ="">

82 <res:dimension >0</res:dimension >

</res:nesting >

</res:argument >

85 <res:argument res:io="in" res:type=" double" res:implicit ="false">

<res:label >den2 </res:label >

<res:option >-d</res:option >

88 <res:value res:regex ="false" res:brand =" regular">

<res:value/>

<res:extensions/>

91 </res:value >

<res:space >true </res:space >

<res:nesting res:separator =","

94 res:initDelimiter =""

res:endDelimiter ="">

<res:dimension >0</res:dimension >

97 </res:nesting >

</res:argument >

<res:argument res:io="in" res:type=" double" res:implicit ="false">

100 <res:label >cst </res:label >

<res:option >-e</res:option >

<res:value res:regex ="false" res:brand =" regular">

103 <res:value/>

<res:extensions/>

</res:value >

106 <res:space >true </res:space >

<res:nesting res:separator =","

res:initDelimiter =""

109 res:endDelimiter ="">

<res:dimension >0</res:dimension >

</res:nesting >

112 </res:argument >

<res:argument res:io="out" res:type="URI" res:implicit ="false">

<res:label >fileout </res:label >

115 <res:option >-o</res:option >

<res:value res:regex ="false" res:brand =" replace">

<res:value >alcresult.img </res:value >

118 <res:extensions >hdr </res:extensions >

</res:value >

<res:space >true </res:space >

121 <res:nesting res:separator =","

res:initDelimiter =""

res:endDelimiter ="">

124 <res:dimension >0</res:dimension >

</res:nesting >

26

NeuroLOG ANR-06-TLOG-024

</res:argument >

127 <res:argument res:io="out" res:type="URI" res:implicit ="true">

<res:label >minf </res:label >

<res:option/>

130 <res:value res:regex ="true" res:brand =" regular">

<res:value >.*minf </res:value >

<res:extensions/>

133 </res:value >

<res:space >true </res:space >

<res:nesting res:separator =","

136 res:initDelimiter =""

res:endDelimiter ="">

<res:dimension >0</res:dimension >

139 </res:nesting >

</res:argument >

</res:arguments >

142 <res:dependencies >

<res:dependency res:category =" library" res:osname ="linux">

<res:target >libaimsalgo.so.3.0</ res:target >

145 <res:version >1.0.0 </ res:version >

<res:symbolicName >libaimsalgo.so.3.0</ res:symbolicName >

<res:description/>

148 <res:localization >/opt/jgasw/alc </res:localization >

<res:organization/>

<res:copyright >CeCILL -B</res:copyright >

151 <res:reference/>

<res:contactAddress/>

</res:dependency >

154 <res:dependency res:category =" library" res:osname ="linux">

<res:target >libaimsalgopub.so.3.0</ res:target >

<res:version >1.0.0 </ res:version >

157 <res:symbolicName >libaimsalgopub.so.3.0</ res:symbolicName >

<res:description/>

<res:localization >/opt/jgasw/alc </res:localization >

160 <res:organization/>

<res:copyright >CeCILL -B</res:copyright >

<res:reference/>

163 <res:contactAddress/>

</res:dependency >

<res:dependency res:category =" library" res:osname ="linux">

166 <res:target >libaimsdata.so.3.0</ res:target >

<res:version >1.0.0 </ res:version >

<res:symbolicName >libaimsdata.so.3.0</ res:symbolicName >

169 <res:description/>

<res:localization >/opt/jgasw/alc </res:localization >

<res:organization/>

172 <res:copyright >CeCILL -B</res:copyright >

<res:reference/>

<res:contactAddress/>

175 </res:dependency >

<res:dependency res:category =" library" res:osname ="linux">

<res:target >libcartobase.so.3.0</ res:target >

178 <res:version >1.0.0 </ res:version >

<res:symbolicName >libcartobase.so.3.0</ res:symbolicName >

<res:description/>

181 <res:localization >/opt/jgasw/alc </res:localization >

<res:organization/>

<res:copyright >CeCILL -B</res:copyright >

184 <res:reference/>

27

NeuroLOG ANR-06-TLOG-024

<res:contactAddress/>

</res:dependency >

187 <res:dependency res:category =" library" res:osname ="linux">

<res:target >libcartodata.so.3.0</ res:target >

<res:version >1.0.0 </ res:version >

190 <res:symbolicName >libcartodata.so.3.0</ res:symbolicName >

<res:description/>

<res:localization >/opt/jgasw/alc </res:localization >

193 <res:organization/>

<res:copyright >CeCILL -B</res:copyright >

<res:reference/>

196 <res:contactAddress/>

</res:dependency >

<res:dependency res:category =" library" res:osname ="linux">

199 <res:target >libgraph.so.3.0</ res:target >

<res:version >1.0.0 </ res:version >

<res:symbolicName >libgraph.so.3.0</ res:symbolicName >

202 <res:description/>

<res:localization >/opt/jgasw/alc </res:localization >

<res:organization/>

205 <res:copyright >CeCILL -B</res:copyright >

<res:reference/>

<res:contactAddress/>

208 </res:dependency >

<res:dependency res:category =" library" res:osname ="linux">

<res:target >libsigc -2.0. so.0</res:target >

211 <res:version >1.0.0 </ res:version >

<res:symbolicName >libsigc -2.0. so.0</res:symbolicName >

<res:description/>

214 <res:localization >/opt/jgasw/alc </res:localization >

<res:organization/>

<res:copyright >CeCILL -B</res:copyright >

217 <res:reference/>

<res:contactAddress/>

</res:dependency >

220 <res:dependency res:category =" library" res:osname ="linux">

<res:target >libstdc ++.so.5</res:target >

<res:version >1.0.0 </ res:version >

223 <res:symbolicName >libstdc ++.so.5</res:symbolicName >

<res:description/>

<res:localization >/opt/jgasw/alc </res:localization >

226 <res:organization/>

<res:copyright >CeCILL -B</res:copyright >

<res:reference/>

229 <res:contactAddress/>

</res:dependency >

</res:dependencies >

232 </res:bundle >

28

	darkblue Introduction
	darkblue jGASW toolbox
	darkblue Data modeling
	darkblue Data binding

	darkblue Service wrapper
	darkblue Template processor
	darkblue WS implementation and stubs generation
	darkblue Packaging and deployment

	darkblue User interfaces
	darkblue Graphic interface
	darkblue Command-line interface

	darkblue Tools relocation
	darkblue Data management
	darkblue Local execution
	darkblue Grid execution
	darkblue Submission channels
	darkblue Job submission policies
	darkblue Fault tolerance

	darkblue Automatic execution
	darkblue Results manipulation
	darkblue Extensions

	darkblue Invocation client interface
	darkblue WSDL and schema parsers
	darkblue Service invocation

	darkblue Image processing tools catalog
	darkblue Image analysis pipelines design
	darkblue Concrete example
	darkblue Context
	darkblue Wrapping and publishing
	darkblue Execution

	darkblue Conclusions
	darkblue jGASW Java project
	darkblue Configuration properties
	darkblue Schema
	darkblue Descriptor example

