
Towards a general ontology of computer programs

Pascal Lando, Anne Lapujade, Gilles Kassel, Frédéric Fürst

MIS, Jules Verne University of Picardie, 33 rue Saint Leu, F-80039 Amiens, France
pascal.lando@u-picardie.fr, anne.lapujade@u-picardie.fr,
gilles.kassel@u-picardie.fr, frederic.furst@u-picardie.fr

Abstract. Over the past decade, ontology research has extended into the field of
computer programs. The work has sought to define conceptual descriptions of
the programs and thus master the latter's design and use. Unfortunately, these
efforts have only been partially successful. Here, we present the basis of a Core
Ontology of Programs and Software (COPS) which integrates the field’s main
concepts. But, above all, we emphasize the method used to build the ontology.
Indeed, COPS specializes the DOLCE foundational ontology (“Descriptive
Ontology for Linguistic and Cognitive Engineering”, Masolo et al., 2003) as
well as core ontologies of domains (e.g. artefacts, documents) situated on a
higher abstraction level. This approach enables us to take into account the “dual
nature” of computer programs, which can be considered as both syntactic
entities (well-formed expressions in a programming language) and artefacts
whose function is to enable computers to process information.

Keywords. Knowledge engineering, ontological engineering, foundational
ontologies, core ontologies, program ontologies.

1 Introduction

Over the last ten years or so, the field of computing programs has witnessed an
increasing number of ontological investigations in several disciplines and with
different objectives: in the philosophy of computer science, the goal is to attain better
knowledge of the nature (Eden & Turner, 2007) and semantics of computer programs
(Turner & Eden, 2007); whereas in software engineering, formal descriptions seek to
facilitate program maintenance (Welty, 1995, Oberle et al., 2006). Such descriptions
can also be used to orchestrate and automate the discovery of web services (Roman et
al., 2005).

Our current work is in line with these efforts. In a first step it seeks to build a
general or “core” ontology (Gangemi & Borgo, 2004) of the domain of programs &
software, and which will encompass the latter's main concepts and relations. This core
ontology, (named COPS for "Core Ontology of Programs and Software"), will be
used in a second step to conceptualize a sub-domain of computer programs, namely
that of image processing tools. This step takes place within the project NeuroLOG
(http://neurolog.polytech.unice.fr) which aims at developing a distributed software
platform to help members of the neuroimaging community to share images and image
processing programs. This platform relies on an ontology integrating COPS as a
component (Temal et al., 2006).

In this paper, we present not only our current content for COPS but more
generally the methodological process that we used to build the ontology and the
resulting structural features. The COPS ontology indeed specializes more abstract
modules which strongly determine its structure, including the DOLCE foundational
ontology (“Descriptive Ontology for Linguistic and Cognitive Engineering”, Masolo
et al., 2003) and the I&DA core ontology (“Information and Discourse Acts”, Fortier
& Kassel, 2004). This type of design process is aimed at mastering two sorts of
complexity (i) conceptual complexity, providing the ability to model complex objects
(such as programs) at different abstraction levels and (ii) modeling complexity,
providing the re-use of previously used & approved modules and also, the ability to
design new modules by working in a distributed manner.

Two syntactic manifestations of COPS exist: one is coded in the semi-formal
language from the OntoSpec method (Kassel, 2005) and the other is coded in the
formal web ontology language OWL. Within the NeuroLOG project, this latter
expression is implemented into software under development that includes a semantic
research tool called CORESE (designed as part of the ACACIA project at the INRIA
institute, http://www.inria.fr/acacia/corese). However, due to space restrictions, we
shall disregard these syntactic aspects in this paper and focus on the ontology’s
content.

The remainder of this article is structured in the following way. In section 2, we
present the overall ontological framework of reference used (and the DOLCE and
I&DA ontologies in particular). Section 3 details the COPS ontology’s content and
our design choices. In section 4, our work is compared with other efforts to design
ontologies in the domain of computer programs.

2 Our Ontological Framework

As shown in Figure 1, the COPS ontology is integrated into a larger ontology
composed of sub-ontologies which are situated at different levels of abstraction: a
descending link between two sub-ontologies O1 and O2 means that the conceptual
entities (concepts and relations) of O2 are defined by specialization of the conceptual
entities of O1. The DOLCE foundational ontology and the different core ontologies
make up the resource used by the OntoSpec methodology (http://www.laria.u-
picardie.fr/IC/site/) to help structure application ontologies (which include all the
concepts necessary for a particular application), such as that developed within the
NeuroLOG project.

As a consequence of this overall structure, COPS’s conceptualization depends on
modeling choices made upstream, i.e. in components situated at a higher level of
abstraction. In this section, we present these key modeling choices by successively
introducing the DOLCE ontology (2.1), the modeling of (participant) roles & artefacts
(2.2) and the I&DA ontology (2.3).

 Foundational
ontology

Core
ontologies

 Domain
ontologies

DOLCE

I&DA

OntoKADS

COPS

Particular

Documents

Artefacts

Participant roles

Reasonings

Programs &
Software

Medical images Images processing tools
Fig. 1. Structure of the application ontology in the NeuroLOG project.

2.1 DOLCE (Particulars)

DOLCE is a “foundational” ontology, which means that it comprises abstract
concepts aimed at generalizing the set of concepts that we may encounter in the
different domains of knowledge. In accordance with philosophically-grounded
principles, DOLCE’s domain – that of Particulars – is partitioned into four sub
domains (cf. Fig. 2):
− Endurants are entities “enduring in time” (e.g. the present article). Within

Endurants, Physical Objects are distinguished from Non-Physical Objects, since
only the former possess direct spatial Qualities. The domain of Non-Physical
Objects covers social entities (e.g. the French community of researchers in
knowledge engineering) and cognitive entities (e.g. your notion of knowledge
engineering). To take plural entities into account (a persons in a community or the
proceedings of a conference), the notion of Collection was recently introduced
under Non-Physical Objects (Bottazzi et al., 2006).

− Perdurants are entities which “happen in time” (e.g. your reading of this article)
and in which Endurants participate. Among Perdurants, one defines Actions that
are intentionally accomplished (Accomplishments), i.e. controlled by an Agent
(further defined in 2.2).

− Endurants and Perdurants have inherent properties (Qualities) that we perceive
and/or measure (e.g. the weight of the paper copy of the article you may be holding
or how long it takes you to read this article).

− These Qualities take a value (Quale) within regions of values which are Abstracts
(e.g. 20 grams, 15 minutes).
These concepts are defined in DOLCE by means of rich axiomatization, which

space restrictions prevent us from presenting. In particular, Endurants and Perdurants
can be differentiated in terms of the dissimilar temporal behaviors of their parts. The
interested reader is invited to refer to (Masolo et al., 2003).

Particular

Endurant Perdurant Quality Abstract

Physical
Object

Non-physical
Object

Mental
Object

Agentive
Social
Object

Event Stative

Achievement
Accomplishment

State Process

Collection
Action

Fig. 2. An excerpt from DOLCE’s hierarchy of concepts.

Comment: in the following sections, names of conceptual entities will be noted in
italics, with first Capital Letters for concepts and in a javaLikeNotation for relations.

2.2 Roles and Functions

In this section, we introduce two important notions linking Endurants to Perdurants
(namely roles and functions) and we provide a brief reminder of the underlying
modeling choices (Bruaux et al., 2005).

A role (or more exactly a “participant role” or “thematic role”) accounts for the
the behaviour of Endurants when participatingIn (as defined by DOLCE) Perdurants.
By way of an example, during the writing of an article, several entities participate in
this Action: a person as an Agent, a pencil or a pen as an Instrument and the article
itself as a Result. Here, the term “ participant role” designates a category of concepts
(e.g. Agent, Instrument, Result) which constitute a sub-ontology of Endurants, since
the nature of the participation relation of DOLCE constraints participants to be
Endurants (cf. Fig. 3a).

A function can be defined as the ability – assigned by agents to Endurants – to
facilitate the performance of an Action, i.e. the ability of playing the role of
Instrument in a Perdurant; in turn, this notion enables definition of the concept of an
Artefact - an Endurant to which a function is assigned. According to the type of
Action (the sub-ontology of Actions on which COPS relies is discussed in 3.2),
different types of Artefacts can be distinguished (cf. Fig. 3b): Tools are distinguished
from Cognitive Artefacts according to whether the Action they can perform
corresponds to modification of the physical world or the non-physical world. Of the
latter, Artefacts of Communication enable communication of information to agents,
whereas Artefacts of Computation allow computers to perform Actions as Agents.

In Figure 3, one can note that the concepts of Author and Scientific Publication
encapsulate the type of entity and, respectively, the role and function assigned to the
entity. This modeling choice, which is consistent with the most common paradigm for
role modeling (Steimann, 2000), leads to a tangled taxonomy.

 Endurant

Person Determinant Patient

Agent Substrate

Author

#PascalLando

Endurant

Non-Physical
Object

Artefact

Cognitive ArtefactTool

 Artefact of
Communication

Artefact of
Computation

Scientific Publication

#(Lando et al., 2007)3a

isa
isa

3b

Fig. 3. Modeling of roles (a) and functions-artefacts (b).

2.3 I&DA (Inscriptions, Expressions and Conceptualizations)

I&DA is a core ontology in the domain of semiotics, and was initially built to classify
documents according to their contents.

Physical Endurant

Support

Physical Object Non-physical Object
Cognitive Artefact

 Artefact of
Communication

Inscription Expression Conceptualization Collection

Language Linguistic
Expression

 Formal
Expression

Concep
Proposition

Fig. 4. The top level of I&DA’s hierarchy of concepts.

As shown in Figure 4, I&DA extends DOLCE by introducing three main concepts:
− Inscriptions are knowledge forms materialized by a substance and inscribed on a

physical Support (e.g. a written text materialized by some ink on a sheet of paper).
Furthermore, these forms are intentional objects, which hold for other entities:
Inscriptions realize Expressions.

− Expressions are non-physical knowledge forms orderedBy a Language. In their
turn, Expressions hold for other entities, namely contents that agents attribute to
them: Expressions express Conceptualizations.

− Lastly, Conceptualizations are means by which agents can reason about a world.
Within Conceptualizations, a functional distinction is made between Propositions
(which are descriptions of situations) and Concepts (which serve to classify entities
in a world).
The reader will note that, in order to account for documents, I&DA chooses to

consider three distinct entities rather than three different views of the same entity. We
shall see in the next section that this modeling choice has important repercussions on
the structure of COPS.

3 COPS : a Core Ontology of Programs and Software

The COPS ontology indeed classifies a program as a document whose main
characteristic is to allow a computer to perform information processing. In section
3.1, we first show how the ontological framework presented so far contributes to the
definition of these particular documents. In sections 3.2 to 3.5, we then present
several sub-ontologies dedicated to the different aspects of the notion of “program”.

3.1 The Dual Nature of Programs

Firstly, the distinction made in DOLCE between Endurants and Perdurants prompts
us to distinguish between the program (as an Endurant) and its executions, which are
Perdurants. Secondly, when focusing on the program as an Endurant, the distinctions
in I&DA between Inscriptions, Expressions and Conceptualizations prompt us to
consider three categories of entities commonly referred to as “programs” (cf. Fig. 5):
− Files, which are Inscriptions written on an electronic support (e.g. CDs, computer

memory, magnetic tape, etc.). Furthermore, these files constitute only one type of
program Inscription; a paper listing or an on-screen display of a program are also
program Inscriptions.

− Computer Language Expressions, which are well-formed formulas
(isAWellFormedFormula Of is a sub-relation of isOrderedBy) in a Computer
Language. These expressions include Programs.

− DataTypes and Algorithms, which are Conceptualizations that represent the
semantics of Programs. DataTypes are Concepts on which rely programming
languages (e.g. variable, class, structure) and which are reflect to diversity of
programming languages (Turner & Eden, 2007). Algorithms describe calculus
steps in terms of these DataTypes (e.g. affecting a constant to the value of a
variable, then adding another value, etc.).
This approach boils down to considering programs as Expressions, which is a

consensual point of view in both computer science and philosophy. However, we
consider that this purely syntactical description of a program is not enough to fully
capture the nature of programs.

Indeed, programs have also a functional dimension, in that they allow computers
to perform Actions (Computations). This functional dimension is present in
expressions such as “sort program”, “program for calculating the greatest common
divisor of two numbers” or “image processing program”. Programs are therefore also
Artefacts of Computation (cf. Fig. 5). As commonly proposed in philosophy for the
characterization of artefacts (Kroes & Meijers, 2002), we therefore end at a dual
characterization of programs, considered to be both Computer Language Expressions
and Artefacts of Computation.

In order to account for these dimensions of programs (and refine them), COPS
proposes a sub-ontology of Actions (cf. 3.2) and a sub-ontology of Languages (cf.
3.3). We shall see in 3.4 that COPS’s concept of Program integrates complementary
constraints with regard to this first characterization.

Inscription

File

Directory

Formal Expression

Computer Language
 Expression

Artefact of Computation

Program

Concept

Data Type

Proposition

Action model

Algorithm

Conceptualization

Fig. 5. The general structure of COPS.

3.2 A Sub-ontology of Actions

In order to refine the functional dimension of Programs (and Computer Language
Expressions in general) and specify what these latter allow a person or a computer to
perform, COPS is endowed with an ontology of Actions (cf. Fig. 6).

On one level, Actions are distinguished according to (i) the world in which the
transformation-Action occurs (physical (Doing) or non-physical (Non-physical
Action)) and (ii) the Agent performing the Action (a human (Human Action) or a
computer (Computational Action)).

The first semantic axis relies on a strong hypothesis dealing with the identity
criteria of Actions, namely that Actions performed in separate worlds of entities are
themselves distinct Actions. The worlds of entities considered in COPS converge with
the common hierarchy of computer description levels, to which we add the
“knowledge level” postulated by Newell (1982). This hypothesis prompts
specialization of Non-physical Actions into Symbolic Actions (which, at the symbolic
level, consist in transforming Expressions - e.g. Executing a Program, Compiling a
Program) and Conceptual Actions (which, at the knowledge level, consist in
transforming Conceptualizations). Of the latter, Actions involving knowledge models
and which are taken into account by the CommonKADS methodology (Bruaux et al.,
2005) (e.g. Diagnosing a car’s failure, Monitoring a patient) are distinguished from
Actions performed on Data and Data Types constituting the paradigms generated by
the different programming languages (e.g. Incrementing a Variable, Creating an
Object). The reader should note (cf. Fig. 6) that Discourse Acts are Non-physical
Actions. The latter (considered as Actions which lead to a change in the state of
knowledge of the addressee of the discourse) are used in COPS to account for Actions
such as Requests (e.g. querying databases) or Orders for executing Programs.

 Action

Doing Non-physical
action

Human
action

Computational
action

Discourse act
Symbolic

action

Symbolic
computation

Executing
a program

Compiling
a program

Computation

Conceptual
action

Creating
an object

Incrementing
a variable

Monitoring
a patient

Diagnosing a
car's failure

Fig. 6. The sub-ontology of Actions in COPS.

3.3 A Sub-ontology of Computer Languages

In order to refine the syntactical dimension of Expressions, COPS includes an
ontology of computer languages. Classically, one distinguishes between natural
languages and formal languages. The formal languages of interest here are Computer
Languages, i.e. those designed for interpretation by a computer (microprocessor) or a
program. Our conceptualization of Computer Languages (cf. Fig. 7) is based on the
functions (the artefactual dimension) of the Expressions that they can order. The first
category of computer languages is that of General Purpose Computer Languages
(GPCLs), i.e. Turing-complete languages dedicated to the writing of all kinds of
programs. The second category is that of Domain-Specific Computer Languages
(DSCLs), i.e. non-Turing-complete languages limited to the writing of particular types
of expressions (database queries, operating system commands, etc.). Programming
languages are all GPCLs that are understandable by humans. GPCLs that are only
understandable by computers or programs are Low-level Computer Languages (or
low-level programming languages): Machine Languages (understandable by a
processor) and Byte-code Languages (understandable by a virtual machine).

 Language

Natural language Formal language

Computer language Logical language

General purpose
computer language

Domain specific
computer language

Query
language

Command
language

Low-level computer
language

Programming
language

Bytecode
language

Machine
language

Fig. 7. The sub-ontology of computer languages in COPS.

3.4 A Sub-ontology of Computer Language Expressions and Programs

The sub-ontology of Expressions (all of which are considered here to be well-formed
Expressions) mirrors the sub-ontology of Languages that order these Expressions.
The structure of these two taxonomies is similar (cf. Fig. 8) and is based on the
functional dimension. An Expression in a GPCL (General Purpose Computer
Language Expression) allows a computer to perform an arbitrary Computation (e.g.
declaring a variable, calculating the greatest common divisor of two numbers). By
contrast, an Expression in a Query Language (Query Expression) or an Expression in
a Command Language (Command Expression) are functionally different: they do not
allow computers to performing a Computation but allow (human) users to Ordering
(which is a kind of Discourse Act) the performance of particular Computations, such
as, for example, querying or modifying a set of data. These Expressions are therefore
Artefacts of Communication and this functional distinction has repercussions for the
definition of COPS’s concept of Program.

On one side, we consider that a Program syntactically corresponds only to a
particular type of Expressions orderedBy a Programming Language. Indeed, the
peculiarity of Expressions qualified as Programs is that they can be either directly
executed by a computer (after a compilation) or taken in charge by an interpreter. As
an example, a program in the language C is composed of one or more functions, one
of these functions being necessarily called “main”. By contrast, Expressions such as a
function or an instruction do not possess this entry point rendering the Expression
executable or interpretable.

On another side, we consider that there exist executable or interpretable
Expressions which are not Programs. Indeed, in the same lines as Eden and Turner
(Eden & Turner, 2007), we only speak of Programs as Expressions being orderedBy
Turing-complete languages (or General Purpose Programming Languages). Hence
COPS does not consider a SQL query or a shell command, which are yet interpretable
or executable, to be Programs. To sum up, we define a Program as an Expression in a
Turing-complete language which can be interpreted or compiled and executed by an
Operating System (Executable Program) or a Virtual Machine (Byte-code Program).

In addition, crosscutting relations link the different types of Programs: a Source
Code hasForExecutable (or “can be compiled into several”) Executable programs,
and conversely an Executable Program or a Byte-code Program hasForSourceCode a
Source Code.

Formal Expression

Artefact of
Computation

Computer Language Expression

Program

Domain Specific Computer
Language Expression

Query
Expression

Command
Expression

General Purpose Computer
Language Expression

Loop

Fonction Source Code

Programming
Language Expression

Low-level Computer
Language Expression

Executable
 Program

Byte-code
Program

Fig. 8. A sub-ontology of Programs in COPS.

Note that Operating Systems or Virtual Machines do not appear in COPS’s sub-
ontology of Programs. The reason is that they are not Programs, but they are rather
made up of a set of Programs. They are therefore related to software, which are
defined in COPS as collections of Programs, as presented in the next section.

3.5 A Sub-ontology of Software and Platforms

This sub-ontology of COPS models entities that are collections of Programs rather
than single Programs. The concept Library of Programs (cf. Fig. 9) designates a
Collection of Programs and, potentially, other documents (such as manuals).

By analogy with Program, Software is defined as both a Library of Programs and
an Artefact of Computation. Since it must be executable, Software includes at least
one Executable (or Interpretable) Program. Software includes Compilers (whose
function is to allow a computer to translate a Source Code into an Executable
program), Interpreters (whose function is to allow a computer to execute a Source
Code) and Operating Systems (whose function is to allow a computer to execute
Executable Programs). This function defines another class of Artefacts - the
Platforms.

A Platform can be a purely material entity (Hardware Platform) or an entity that
is partially made up of Software (Software Platform). Software Platforms include
Operating Systems and Computers on which Operating Systems run.

Crosscutting relations link Programs and particular types of Software: a Source
Code isCompilableBy particular Compilers and/or isInterpretableBy particular
Interpreters; an Executable Program runsOn a particular Operating System; a Byte-
code Program runsOn a particular Virtual Machine.

Collection Artefact of
Computation

Technical
 Artefact Physical

 Object
Library of Programs

Software

Operating
System

Platform

Software
Platform

Hardware
Platform

Computer Cluster

Computer Running
Under an OS

Compiler

Interpreter

Virtual
Machine

Fig. 9. The sub-ontology of Software and Platforms in COPS.

4 Discussion

In this section, we compare COPS with other attempts to elaborate ontologies of
programs.

In the philosophy of computer science, Eden & Turner (2007) recently began
creating an ontology of programs in order to answer questions like: how can we
display differences between hardware and software entities, and how can we
distinguish a program from a program specification? Even though the ontological
tools used in the present work are different from Eden & Turner's, it is interesting to
compare the respective conceptualizations. For example, Eden & Turner (2007)
define a program as a “well-formed expression in a Turing-complete programming
language” - emphasizing the syntactical dimension of programs but setting aside their
functional dimension (which exists in the COPS concept of Program). The fact that
these two notions differ suggests that it would be useful to extend the COPS core
ontology to other concepts.

The “web services” community has generated a variety of initiatives – METEOR-
S, OWL-S, WSMO (Roman et al., 2005) – which seek to formally describe the
discovery, evocation and orchestration (at different levels of automation) of such
services. These efforts are currently far removed from COPS’ aims because (i) the
work emphasizes the operational nature of the descriptions and (ii) these descriptions
concerning the function (the Action in COPS) realized by the service (e.g. booking a
travel ticket) are situated on a meta level, which allows definition of the prerequisites
for operation of the service (e.g. information about the travel has to be given) and the
effects resulting from its execution (e.g. the ticket price is debited from a bank
account). Within the framework of the NeuroLOG project, the functionalities targeted
in terms of the evocation and orchestration of software tools are similar, which is why
we plan to extend COPS to consider this level of description.

In the software engineering domain, Welty (2005) has suggested developing
Comprehensive Software Information Systems (for software maintenance) by using
an ontology which enables a detailed, conceptual description of software. This
ontology could be considered as an extension of the COPS Expression sub-ontology,
as it enables description at the code level and consideration of all the syntactical

constructions available in programming languages. On the other hand, it supposes
(strangely) that the entities playing data and result roles are real world entities (e.g.
persons) and not conceptualizations modeling the real world. In COPS, we chose to
follow (Turner & Eden’s, 2007) idea whereby program semantics are based on data
and data types which model real world entities - for example (in the object paradigm),
an instance which models an individual person or a class which models a set of
persons.

Other work in the software engineering domain (Oberle et al., 2005) led to
publication of the Core Software Ontology (CSO) in order to better develop,
administer and maintain complex software systems. The ontology-building approach
is similar to ours, with re-use of the DOLCE high level ontology and core ontologies
such as DnS (“Descriptions & Situations”, Gangemi & Mika, 2003). COPS and CSO
also share some modeling choices, such as the distinction between three entities
(called Inscriptions, Expressions and Conceptualizations in COPS). However, we can
note some different modeling choices. For example, in CSO (and assuming that every
program can be a data item for another program), the Data concept subsumes the
Software concept. In contrast, COPS assimilates the Data concept to a participant role
(cf. 2.2) which can be played by arbitrary entities - Programs, for example. In fact,
whereas CSO considers only one type of Action (namely “computational activities”
whose participants are necessarily Inscriptions (in the sense of COPS) inscribed on
some sort of hardware), COPS distinguishes several categories of Actions according
to the nature of the participant entities (cf. 3.2). COPS’ richer framework allows it to
define a Program Compilation as an Action in which at least two Programs
participate. Lastly, we can note that the functional dimension of programs is absent in
CSO.

Those comparisons show that other core ontology proposals for the software
domain do exist but that (i) the various efforts have not been coordinated and (ii) the
existing ontologies display some important differences in terms of both range and
structure.

5 Conclusion

In the present paper, we have presented the foundations of a core ontology of
programs and software (COPS) derived by specializing the DOLCE foundational
ontology and whose goal is to help structure more specific programming domains. In
this connection, the next application of COPS within the NeuroLOG project, to help
conceptualizing the domain of image processing tools, will provide an opportunity for
evaluating the modeling choices made for the building of the ontology.
COPS’ current conceptualization reveals a domain populated by entities having
various nature. Indeed, there are temporal entities (program executions), physical
entities (program inscriptions), plural entities (program collections), functional
entities (program execution platforms) and, lastly, dual-nature (syntactic and
functional) entities - the programs themselves. COPS’ model-building feedback
confirms the fact that ontological resource re-use (enabling modeling choices at
several abstraction levels) is necessary for controlling the complexity of such
domains.
In its current version, COPS only covers a part of this domain. Work in process is
extending the ontology in several directions. A first goal is to extend the programs

semantics: links with processing (functions) only give an account of the “what”, so it
lacks the “how” - requiring us to take into account algorithms and data types which
have only been positioned (cf. Fig. 5) and not precisely analyzed. A second goal is to
enlarge COPS to program specifications: we plan to re-use the “problem resolution
model” notion in OntoKADS (Bruaux et al., 2005) to extend COPS to the more
general class of action models performed by computers using programs.

Acknowledgements

This work was funded in part by the NeuroLOG project (ANR-06-TLOG-024) under
the French National Research Agency’s Software Technologies program
(http://neurolog.polytech.unice.fr).

References

Bottazzi E., Catenacci C., Gangemi A. & Lehmann J.: From Collective Intentionality to
Intentional Collectives: an Ontological Perspective. In: Cognitive Systems Research, Special
Issue on Cognition, Joint Action and Collective Intentionality, 7(2-3), p. 192-208 , Elsevier
(2006).

Bruaux S., Kassel G. & Morel G.: An ontological approach to the construction of problem-
solving models. In P. Clark and G. Schreiber (eds), In: 3rd International Conference on
Knowledge Capture (K-CAP 2005), p. 181-182, ACM (2005). A longer version is published
as LaRIA’s Research Report 2005-03. Available at: http://hal.ccsd.cnrs.fr/ccsd-00005019 .

Eden A. H. & Turner R.: Problems in the Ontology of Computer Programs. In : Applied
Ontology 2(1), p. 13-36 (2007).

Fortier J.-Y. & Kassel G.: Managing Knowledge at the Information Level: an Ontological
Approach. In: Proceedings of the ECAI'2004 Workshop on Knowledge Management and
Organizational Memories, p. 39-45, Valencia, Spain (2004).

Gangemi A. & Borgos S. (eds): Proceedings of the EKAW’04 Workshop on Core Ontologies
in Ontology Engineering, Northamptonshire (UK). From http://ceur-ws.org (Vol-118)
(2004).

Gangemi A. & Mika P.: Understanding the Semantic Web through Descriptions and
Situations. In: R. Meersman et al. (eds), Proceedings of the International Conference on
Ontologies, Databases and Applications of Semantics (ODBASE 2003), Catania (Italy),
(2003).

Kroes P. & Meijers A.: The Dual Nature of Thechnical Artifacts – presentation of a new
research programme. In: Techné, 6(2), p. 4-8 (2002).

Masolo C., Borgo S., Gangemi A., Guarino N., Oltramari A. & Schneider L.: The WonderWeb
Library of Foundational Ontologies and the DOLCE ontology. In: WonderWeb Deliverable
D18, final report (vr. 1.0, 31-12-2003) (2003).

Newell A.: The Knowledge Level. In: Artificial Intelligence 18, p. 87-127 (1982).
Niles I., Pease A.: Towards a standard upper ontology. In: Proceedings of the International

Conference on Formal Ontology in Information Systems (FOIS’2001). ACM Press, p 2-9
(2001).

Oberle D., Lamparter S., Grimm S., Vrandecic D., Staab S. & Gangemi A.: Towards
Ontologies for Formalizing Modularization and Communication in Large Software Systems.
In: Applied Ontology, 1(2), p. 163-202 (2006).

Roman D., Keller U., Lausen H., de Bruijn J., Lara R., Stollberg M., Polleres A., Feier C.,
Bussler C. & Fensel D.: Web Service Modeling Ontology. In: Applied Ontology 1, p. 77-
106 (2005).

Steimann F.: On the representation of roles in object-oriented and conceptual modelling. In:
Data and Knowledge Engineering, 35, p. 83-106 (2000).

Temal L., Lando P., Gibaud B., Dojat M., Kassel G. & Lapujade A.: OntoNeuroBase: a multi-
layered application ontology in neuroimaging. In: Proceedings of the 2nd Workshop: Formal
Ontologies Meet Industry: FOMI 2006, Trento (Italy) (2006).

Turner R. & Eden A.H.: Towards a Programming Language Ontology. In: G. Dodig-Crnkovic
& S. Stuart (eds.), Computation, Information, Cognition – The Nexus and the Liminal,
Cambridge, UK: Cambridge Scholars Press, chapter 10, p. 147-159 (2007).

Welty C.: An Integrated Representation for Software Development and Discovery. Ph.D.
Thesis, RPI Computer Science Dept. July 1995, From
http://www.cs.vassar.edu/faculty/welty/papers/phd/ (1995)

